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Abstract

We examine the nexus between extreme weather events, urban expansion and

tree cover loss in a global data set of regions from 163 countries spanning the years

2001-2018. We delve into how droughts and floods may drive rural-urban migration,

triggering urban expansion that often leads to deforestation. This deforestation

can in turn exacerbate flood and drought damages. Employing a four-equation

Simultaneous Equations Model, we provide evidence of a vicious cycle of tree cover

loss, increased drought damages and urban expansion at the global scale. Yet, we

also find substantial spatial heterogeneity, especially for the role of tree cover loss

in attenuating or amplifying drought damages. We differentiate by world region

and development level to show varying dynamics of urban expansion, deforestation

and damages, with relevant policy implications for managing urban growth and

environmental sustainability.

JEL Classification: Q54, Q23, O18, R11

Keywords: Natural Disasters, Urbanization, Deforestation, Feedback Loop,

Simultaneous Equation Model

This paper has been presented at Fraunhofer Institute for Systems and Innovation Research ISI, Jena
University as well as internal workshops at Leipzig University. We would like to thank Hannes Feilhauer,
Miguel Mahecha and other seminar participants of the Breathing Nature excellence cluster initiative for
helpful comments and suggestions. We gratefully acknowledge funding from the Saxon State Ministry
for Science, Culture and Tourism (SMWK) – [3-7304/44/4-2023/8846].

∗Leipzig University, Faculty of Economics and Management Sciences, Grimmaische Straße 12, 04109
Leipzig, Germany. E-mail: leonie.ratzke@uni-leipzig.de

†Leipzig University, Faculty of Economics and Management Sciences, Grimmaische Straße 12, 04109
Leipzig, Germany. E-mail: melanie.krause@uni-leipzig.de

‡Leipzig University, Faculty of Physics and Earth System Sciences, Talstraße 35, 04103 Leipzig,
Germany. E-mail: sebastian.sippel@uni-leipzig.de

1



1 Introduction

Extreme climate and weather events, such as droughts and floods are occurring with

increased frequency and intensity in times of climate change (Stocker, 2014, Zhang et al.,

2013). Together with increasing human exposure (Ehrlich et al., 2018), we see a positive

trend in resulting humanitarian disasters. However, it is not only increasing exposure,

but also rapid urbanization as well as tree cover loss that may play a role here. In this

paper, we study the interconnectedness between increased disaster impacts, urbanization,

and tree cover loss with econometric methods.

The literature has typically focused on individual links between two of these three

developments, respectively. For instance, floods and droughts have been shown to drive

migration from rural to urban areas, propelling urbanization in developing countries

(Cattaneo and Peri, 2016, Castells-Quintana et al., 2021, Kaczan and Orgill-Meyer,

2020). As cities expand, the trade-off in land use often leads to land-use change typically

increasing sealed areas and decreasing tree cover (van Vliet, 2019, Huang et al., 2018,

Behnisch et al., 2022). A loss in forest cover then can potentially increase flood damages

due to reduced water retention potential and increase drought damages due to reduced

soil water storage capacity (Bradshaw et al., 2007, Tembata et al., 2020, Haile et al.,

2019). Cascading effects of this kind are yet under-researched in the empirical literature.

It is the goal of our paper to study the importance of the interrelations between these

three phenomena.

We construct a data set of variables at the regional level (NUTS-1) from around the

world from 2001 to 2018. It contains 2079 regions in 163 countries that have experienced

at least one drought or flood event impacting humans within that period. Our four main

variables are change in urban size, deforestation, as well as flood- and drought related

damages. In addition, we have a total of 13 control variables based on insights from the

literature.

In contrast to previous studies, we do not consider each relation separately, but focus

on the their interconnectedness in a whole vicious cycle. We do so by setting up a

four-equation Simultaneous Equations Model (SEM) to capture the interdependencies of

urban growth, deforestation, as well as flood- and drought related damages. To contour

the endogeneity bias, we employ the three-stage least squares (3SLS) estimator with

instrumental variables in our SEM as well as panel and mixed effect models as robustness

checks.

Our results lend strong support to some interrelations of the supposed vicious cycle, while

for others the evidence is more mixed and varies across world regions and development

status. In particular, our findings suggest a strong link between urban expansion and tree

cover loss at various spatial scales in all our specifications. This process is exacerbated

by an increase in drought and flood damages which increase urban size in selected world
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regions, in particular Africa, Europe and North America. The impact of urban expansion

on tree cover loss increases with the Human Development Index (HDI) in most world

regions. Regarding the third link in the vicious cycle, we find that tree cover loss can

either increase or attenuate flood and drought damages, depending on the context. It is

therefore more pronounced in some regions than in others. Our evidence of the vicious

cycle and its strength, dependent on the circumstances, holds insights for policymakers,

which we discuss.

This study is organized as follows: In Section 2, we review some of the literature

related to the urbanization, extreme events and deforestation nexus and derive

hypotheses. This is followed by Section 3 describing the data sources, resolution as well as

pre-processing and compilation, and Section 4, discussing the chosen model specification

and estimation strategies. Section 5 comprises global average results as well as continent

and HDI category specific results. The study concludes with a discussion and concluding

remarks in Section 6.

2 Relation to the existing literature and hypotheses

There is a vast literature studying particular relations of interest in the extreme events

- urbanization - tree cover loss nexus, often modeled in single equations. We build on

many of these insights in the construction of our multi-equation estimation model.

2.1 Extreme weather events and urbanization

55% of the world population is now living in urban areas, with urbanization rates rising

particularly fast in the developing world (United Nations, 2018). Among the pull-factors

that drive migration from rural to urban areas, climate change patterns have in recent

years been receiving particular attention. Moving is a key response to both slow-onset

extreme events (such as droughts) and sudden-onset events (such as floods) (Kaczan and

Orgill-Meyer, 2020). Examples of papers that show how climate events induce migration

in individual countries include Gray and Mueller (2012) for Bangladesh, Joseph and

Wodon (2013) for Yemen and Jessoe et al. (2018) for Mexico.

Barrios et al. (2006) and Marchiori et al. (2012) identify droughts as a key factor

behind urbanization trends in Sub-Saharan Africa. Ober (2019) summarize the literature

on the nexus between extreme events and migration in Asian countries. They also point

out that the main movement is local, with most people migrating to nearby rather than

faraway cities.

Castells-Quintana et al. (2021) work with global data to show that rainfall and

temperature anomalies lead to an increase in urban rates across the whole hierarchy
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of cities and also change their internal structure. The effects are strongest in warmer and

agriculture-based countries, in line with the mechanism outlined by Glaeser (2014) that

urbanization increases with agricultural desperation.

While it is now a consensus in the literature that the effects of climatic change increase

urbanization, Cattaneo and Peri (2016) find that the strength depends on the income

level, because moving requires financial resources. The authors show that the effect is

more pronounced in middle-income countries than in the poorest ones. This argument

is corroborated by Peri and Sasahara (2019) with a global data set on population

movements.

Hypothesis 1: Total economic damages from flood and drought events, are positively

correlated with the rate of urbanization, particularly in agriculture-based and warmer

countries, leading to an increase in urban size.

2.2 Urbanization and tree cover loss

The link between urbanization and tree cover loss has been an intensely debated topic.

Cities often grow in area by expanding at the fringes. Natural habitats or agricultural

land becomes urban space, leading to a loss in tree cover and biodiversity (van Vliet,

2019, Huang et al., 2018).

According to Behnisch et al. (2022), this process is driven by various factors, including

institutional, economic, and demographic influences, and can persist even in regions

with stagnant or declining populations. The authors find that globally, levels of urban

expansion have rapidly increased between 1990 and 2014 and that urban expansion is

positively associated with the Human Development Index.

On the other hand, Ecological Modernization Theory and the Environmental Kuznets

Curve (EKC) suggest a nonlinear relation between urbanization - which goes in line with

development - and tree cover loss, predicting that tree cover loss should decrease at higher

stages of development.1

There have been various empirical studies confirming the existence of the EKC

with peaks of deforestation at urbanization rates of 35% (Ehrhardt-Martinez et al.,

2002) or 65% (Destiartono and Hartono, 2022), depending on the countries and time

periods considered. Other studies fail to find such a connection (Koop and Tole, 1999).

It is noteworthy that the EKC emphasizes the role of the rural population and its

agricultural techniques for explaining deforestation, yet urban-based and global demands

for agricultural products may be important drivers of deforestation as well (DeFries et al.,

1The EKC implies an inverted U-shaped relationship between urbanization as an indicator of the
level of development and deforestation. It highlights the role of the rural population in deforestation:
As described by Ehrhardt-Martinez et al. (2002), ”slash- and burn agriculture” and high population
growth during the early stages of economic development lead to deforestation. Later on, advanced
farming techniques and reduced rural population pressure contribute to a slowdown in deforestation
and, eventually, reforestation.
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2010). According to the authors the notable trend of people migrating to tropical urban

areas is likely to exert increased pressure on the clearance of tropical forests.

In summary, the impact of urbanization on tree cover is complex, as it is intertwined

with the forces of economic development, resource extraction, and urban expansion.

In contrast to the theoretical predictions of the EKC, empirical evidence suggests

that urban growth, particularly when coupled with resource-intensive industries and

expansive urban expansion, often leads to significant tree cover loss, with the extent and

nature of this impact varying across different regions.2 This leads to Hypothesis 2:

Hypothesis 2: Urban expansion significantly contributes to the loss of tree cover.

2.3 Tree cover loss and its impact on flood and drought damages

The third potential link to investigate goes from tree cover loss back to flood and drought

damages to close the hypothetical vicious cycle.

It is widely acknowledged that forest ecosystems play a critical role in providing vital

services such as carbon sequestration, biodiversity conservation, and climate regulation

(MEA, 2005). The influence of forests on regulating extreme weather events, particularly

floods and droughts, has received considerable attention in both scientific research and

policy debates (van Dijk et al., 2009).

Mixed evidence exists regarding the adaptive capacity of forest cover in flood

regulation. Several studies report that the loss of forest cover correlates with increased

flood damages and a decline in flood mitigation capabilities (Bradshaw et al., 2007,

Bhattacharjee and Behera, 2018, Tembata et al., 2020), and that changes in vegetation

cover substantially modify the hydrological response in specific catchments (Costa et al.,

2003). In contrast, other research suggests that tree cover loss does not significantly

impact flood occurrence (Bowling et al., 2000, van Dijk et al., 2009) or alter the

hydrological response and discharge in certain catchments (Beier et al., 2015, Kong et al.,

2022).

Interestingly, van Dijk et al. (2009) challenge some of these findings by arguing that it

is population density, rather than the clearance of forests, that predominantly influences

flood damages following significant rainfall events. The authors emphasize the challenge

of attributing flooding directly to tree cover loss without considering subsequent land use

and its effect on soil infiltration capacity. This highlights the necessity of incorporating

the subsequent land-use into our analysis when examining the impacts of forest cover

loss. 3

2Note that this is not necessarily a contradiction of the EKC for countries that are still on the
upward-sloping part of the curve.

3A further important point to consider is potential heterogeneity in effects due to forest type, since
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Regarding drought mitigation, the evidence in the literature is also mixed. Findings

by Beier et al. (2015) indicate that loss of plant cover, when not followed by soil sealing,

can be associated with enhanced drought mitigation.4

In contrast to that, long-term studies show that the forested Amazon basin,

significantly influences regional rainfall patterns. The reduction in rain due to

deforestation and consequent depletion of water vapor is linked to increasing drought

events in Brazil (Nazareno and Laurance, 2015). In line with these findings, Smith et al.

(2023) show that tree cover loss considerably reduced precipitation in various regions,

impacting agriculture and hydropower generation and thereby intensifying drought

damages.

Frenne et al. (2021) summarized findings indicating that tropical forests generate

at least twice as much rain as areas with little or no vegetation. However, tree cover

loss has to exceed a 30%-50% threshold to significantly reduce regional tropical rainfall.

Lastly, Haile et al. (2019) point out that in East Africa, the aggravation of drought effects

results from a combination of deforestation, land degradation, increasing water demand,

and climate shifts.

Considering the breadth of evidence, it appears that while the relationship between

tree cover loss and flood and drought regulation services is complex and influenced by

various factors such as forest type and subsequent land use, there is a prevailing trend

that suggests a reduction in tree cover tends to undermine an ecosystem’s ability to

regulate water, thereby potentially amplifying the impacts and damages of these extreme

weather events. We thus hypothesize the following:

Hypothesis 3: Loss of tree cover is associated with increased damages from both

floods and droughts due to the diminished capacity of affected ecosystems and related

regulating services to regulate the damages from these extreme weather events.

If none of the hypotheses is rejected, this would mean that there exists a self

reinforcing feed-back loop of extreme events, urbanization and tree cover loss.

Tembata et al. (2020) show that only broad leafed and mixed forest mitigated floods in China, while
coniferous forests did not. Their results are also in line with Kong et al. (2022) who found only a low
increase in catchment discharge after large-scale deforestation of German coniferous forest.

4In this particular case study and catchment in North America, de-vegetation lead to an increase in
drought mitigation services that outweighed the loss of flood regulation services. When vegetation was
removed, there was less water being absorbed by plants and less water lost to the atmosphere through the
process of evapotranspiration. This means that more water remained in the soil or flowed into streams
and rivers, thereby enhancing the availability of water during dry periods.
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(a) Provinces DesInventar (2001-2013) (b) Provinces EM-DAT (2001-2018)

Figure 1 – Included NUTS-1 regions with at least one flood or drought event in the
respective time period in purple.

3 Data

For the estimation of our model, we meticulously compiled data from a variety of sources

on an annual basis, aligning with NUTS-1 regional divisions. In our setting, NUTS-1

regions (corresponding to e.g. federal states in Brazil) are the most appropriate unit

of observation. They strike the balance between availability of the different variables,

ensuring a large number of observations, while at the same time having regions that are

large enough to capture the effects of interest (e.g. urban expansion as a result of disaster-

induced migration from the same region). The resulting spatial coverage of provinces is

depicted in Figure 1.

Our units of observation are those NUTS 1 regions that experienced at least one flood

or drought during the study period 2001-2018. We obtain this information, respectively,

from the disaster data bases DesInventar (UNISDR, nd) and EM-DAT data (Guha-

Sapir et al., 2009). Leveraging the administrative boundaries of these regions, we then

calculated various variables using geo-spatial data. This process included aggregating

information on the number of flood and drought events, associated fatalities, and total

economic damages5, as derived from the disaster data sets to an annual temporal

resolution. We use two different datasets as our basis for the disaster data. The

DesInventar dataset provides consolidated records of compiled information on disaster

damages up until 2015 only for a selected number of countries - primarily from the

developing world. We therefore expand our analysis using the EM-DAT database, which

offers a more extensive temporal and spatial coverage, see Figure 1.

To account for differences in rural and urban contexts, we used the urban land cover

class provided by ESA Land Cover CCI project team: Defourny (2019). Based on this

class, we generated control variables such as population counts and nighttime lights both

5The EM-DAT’s damage estimates include damages to infrastructure, crops, and housing.
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for urban and rural areas in the identified provinces. We follow the literature in using

nighttime lights as proxy for local economic activity and income (da Mata et al., 2012,

Donaldson and Storeygard, 2016). We also include the number of victims of violent

conflicts derived from Sundberg and Melander (2013), Davies et al. (2023) as a control

variable.

Subsequently, we aggregated satellite land cover data to create variables indicative

of land cover changes, as well as state variables such as the area of standing tree cover

and bare ground. Our focus was particularly on tree cover loss stemming from all causes,

but we only considered scenarios where there was no subsequent regrowth, resulting in

bare or sealed surfaces. This approach allowed us to factor in the impacts of different

land uses post tree cover loss. For an in-depth understanding of the data aggregation

methods employed in our study, kindly refer to Table B-1, which outlines the aggregation

framework. A comprehensive account of the variable generation process is provided in

Appendix B.

The final data contains data on 1128 regions in 75 countries based on the DesInventar

data and 2079 regions in 163 countries based on EM-DAT.

Table 1 – Data Sources

Data Source

Disaster Loss Data UNISDR (nd)
Guha-Sapir et al. (2009)

Land Cover ESA Land Cover CCI project team: Defourny (2019)
Income Proxy Li et al. (2020)

Population count Global High Resolution Population Denominators Project
(2018)

Conflict data Sundberg and Melander (2013), Davies et al. (2023)
Administrative boundaries FAO (2015)
Instrumental variables ESA Land Cover CCI project team: Defourny (2019), Li

and Xiao (2019), Liebmann and Smith (1996), Morice et al.
(2021), Brakenridge (2016)

Table 1 summarizes variable sources; Table A-1 in the Appendix provides an overview

of all individual variables included.

4 Methods

4.1 Model specification

We specify a baseline model with four equations, based on the theoretical considerations,

empirical findings and hypotheses derived from the literature described in Sections 2.1 to

2.3.

For the ease of exposition, we will here present the equations and the variables
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involved in a concise way. An overview over the variables, their hypothesized impact in

each equation and the underlying literature can be found in Tables C-1 to C-2.

The first equation models the change in city area or size (∆C) as a function of various

push and pull factors.

∆C = α1 + β11LDt + β12LFt

+ β13NTLU,t + β14PU,t+

+ β15PnU,t ++β16NTLnU,t+

β17FtC,t + β18TSBt + u1 (1)

Push factors which potentially make people want to leave rural areas, include

economic losses from floods (LFt), droughts (LDt), fatalities from violent conflicts

(FtC,t), as well as tree cover loss with subsequent surface sealing or bare area

(TSBt)
6. Pull factors are represented by mean nighttime lights in urban areas

(NTLU,t) as a proxy for income and economic activity in urban areas, compared to mean

nighttime lights in non-urban areas (NTLnU,t) representing economic incentives for

rural-urban migration. Further control variables are population counts in urban

(PU,t) and non-urban areas (PnU,t). The parameters α1 to β18 represent the model

coefficients, and u1 the error term. Based on Hypothesis 1, we expect β11 and β12 to

be positive. This would indicate that the economic losses experienced from flood and

drought events act as a driver of urbanization.

The second equation relates to potential drivers and attenuation of tree cover loss

with subsequent surface sealing or bare area (TSBt).

TSBt = α2 + β21∆C + β22Tt + β23PnU,t + β24NTLnU,t + β25Crt (2)

β26St + β27Vt + β28Bt + β29sealed

+β210PU,t + β211NTLU,t + β212FtC,t + u2

This is modeled as a function of the change in city area (∆C), currently remaining

tree cover (Tt), other vegetation cover (Vt), shurb cover (St), bare surfaces (Bt)

and sealed surfaces (sealed).7 The population count in non-urban areas (PnU,t)

is included with reference to the literature discussed in section 2.2, indicating that the

6Please refer to Appendix B for detailed information about the tree loss variable.
7Controlling for the variability of current land cover improves the accuracy and reliability of the

model’s estimates. It helps to reduce omitted variable bias, ensuring that the estimated coefficients for
other variables are not confounded by the effects of land cover.
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non-urban population can be a driver of tree cover loss due to activities like agriculture,

logging, or other land uses that might impact tree cover. Mean nighttime lights in non-

urban (NTLnU,t) and urban areas (NTLU,t) are included to proxy the level of economic

development. Further included control variables comprise crop cover (Crt) to proxy

agricultural practices and expansion, urban population count (PU,t), and fatalities

from violent conflicts (FtC,t).

Based on Hypothesis 2, we expect the model coefficient β21 to be positive. In

Equation (2) we test Hypothesis 2, suggesting that the net effect of urban expansion on

tree cover loss is positive.

Equations (3) and (4) test the effect of tree loss with no subsequent vegetation

regrowth on drought (Equation (3)) and flood damages (Equation (4)).

LDt = α3 + β31TSBt + β32Crt + β33St + β34Tt + β35Vt+ (3)

+β36Dt + β37NTLnU,t + β38PnU,t + β39NTLU,t + β310PU,t + u3

LFt = α4 + β41TSBt + β42Crt + β43St + β44Tt + β45Vt+ (4)

+β46Ft + β47NTLnU,t + β48PnU,t + β49NTLU,t + β410PU,t + u4

The third equation focuses on the economic losses from droughts (LDt), while the

fourth equation focuses on the economic losses from floods (LFt). Both loss functions are

modeled as a function of tree cover loss (TSBt), as well as variables representing the

non-sealed land cover such as tree cover(Tt), shrub cover (St), other vegetation (Vt),

bare ground (Bt) and crop cover (Crt). Furthermore, we use population count in

urban and non-urban areas (PU,t, PnU,t), as well as the mean nighttime light in urban

and non-urban areas (NTLU,t, NTLnU,t) to proxy exposure of assets, population, or

systems that are at risk of being affected by floods or droughts. The number of droughts

(Dt) in case of Equation (3) and the number of floods (Ft) in case of Equation (4) are

included as a direct measure of the frequency of flood and drought events. The parameters

α3, α4,β31 to β310 as well as β41 to β410 represent the two specifications’ coefficients, u3

and u4 the error terms.

Based on Hypothesis 3, we expect β31 and β41 to be positive, indicating an increase

in flood and drought related damages through the loss of tree cover and the related

regulating potential.
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4.2 Estimation strategy

In order to estimate our system of equations, we employ Simultaneous equation

modeling (SEM). SEM is a robust statistical approach that is crucial for analyzing the

interdependencies and potential feedback loops within the given context. It is widely

employed to model relations between variables, for example in labor economics (Cai,

2010), development economics (Darda and Bhuiyan, 2022), politics (Evans and Pickup,

2010), and ecology (Fan et al., 2016), but we are unaware of SEM applications to study

the extreme events - urbanization - deforestation nexus.

We use the systemfit R package (Henningsen and Hamann, 2007) to estimate our

model’s equations via the three-stage least square (3SLS) estimator, to address

simultaneity bias. This bias arises when variables are used as both predictors and

outcomes within the system. All our variables of interest are endogenous by definition

of the SEM, since they enter the model both as dependent and explanatory variables.

For example, the change in city area (∆C) is an outcome of equation (1) and a

predictor of equation (2). The 3SLS method uses an instrumental variable approach to

effectively correct the simultaneity bias. It also improves efficiency by accounting for

the contemporaneous correlation among equation disturbances. Such a comprehensive

approach ensures that the parameter estimates are both consistent and efficient, through

the additional adjustment for bias due to omitted variables and measurement error by

the use of instrumental variables (IVs) (Schmidt, 1990, Henningsen and Hamann, 2007).

Identifying suitable IVs is critical in the following 3SLS modeling, as these must satisfy

both exogeneity, i.e. being uncorrelated with the error terms8 and relevance, i.e. having

a strong correlation with the endogenous predictors (Wooldridge, 2012).

In the first stage IV Regression, the endogenous variables are predicted using the

specified IVs (please refer to Table 2) and covariates for each equation:

LDt = δ1IVLD + β1X3 + v1 (5)

LFt = θ1IVLF + β2X4 + v2 (6)

TSBt,1 = γ1IVTSB1 + β3X4 + v3 (7)

∆C = π1IV∆C + β4X1 + v4 (8)

TSBt,3 = γ2IVTSB3 + β5X4 + v5 (9)

TSBt,4 = γ3IVTSB4 + β6X4 + v6 (10)

where IV represents the instrumental variable for the endogenous variable of the

8An IV is not correlated with the error term when it influences the dependent variable only through
its direct effect on the explanatory variables that are endogenous.
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respective equation and Xi captures the vector of exogenous variables in equation i in

Section 4.1.

In the second stage, we substitute the predicted values of the endogenous variables

back into their respective equations:

∆C = α1 + β11L̂Ft + β12
ˆLDt + β13FtC,t + β14

ˆTSBt,1 + . . .+ u1 (11)

TSBt = α2 + β21∆̂C + . . .+ u2 (12)

LDt = α3 + β31
ˆTSBt,3 + . . .+ u3 (13)

LFt = α4 + β41
ˆTSBt,4 + . . .+ u4 (14)

Lastly, we estimate all equations simultaneously, accounting for the correlations

among the disturbances:

Minimize: (Y −Xβ)′Σ−1(Y −Xβ) (15)

where: Y =


∆C

TSBt

LDt

LFt

 , X = Matrix of all explanatory variables incl. IVs,

β = Vector of all coefficients, Σ = Covariance matrix of residuals

Table 2 displays the instruments used in the various specifications in this study. Due

to the complexity of our analysis, which includes global and continental, as well as cluster-

grouped analyses by continent and Human Development Index categories, multiple IVs

are necessary. This is because different instruments are effective in different contexts,

such as varying world regions, making it essential to utilize a diverse set of IVs to ensure

robustness in our results. We test the strength of the instruments with F-tests of each of

the equations used for the global analyses as well as for each of the sub-group analyses

in Section 5. Depending on the results, one or several of the candidate instruments are

included in the estimation procedure. The test results for the global models are available

in Appendix D, while the remaining test results are available on request.

For the effect of drought damages on changes in urban size, we seek instruments that

are related to environmental conditions or indicate drought vulnerability of the region

but are not impacted by annual changes in urban areas. Depending on the respective

sub-analysis, we use the annual mean temperature with an 8-year lag (Morice et al.,

2021), the area of mixed treecover with a 9-year lag, the frequency of droughts, and the

interaction between the area of crops with a 9-year lag and the frequency of droughts.

These variables are all related to the vulnerability of a region to suffer drought damages
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Table 2 – 3SLS SEM Instrumental Variable Selection

Dependent
variable

Endogenous
variable

Candidate instruments

∆C LDt Mean temperature t-8, area of mixed treecover
t-9, frequency of droughts, area of crops t -9
multiplied with frequency of droughts

LFt Outgoing longwave radiation, frequency of floods,
area of crops t -9 multiplied with frequency of
floods, flood frequency t- 4 and t- 8

TSBt Tree cover loss with subsequent crop, shrub or
other vegetation land cover t -9

TSBt ∆C Area of sealed crop or shrub cover t- 9
LDt TSBt Needle leafed tree cover loss with subsequent bare

or sealed land cover t-9, Loss of unspecified tree
cover to sealed land cover t- 9
Area of needle leaved tree cover or sealed surfaces
t- 9, Tree cover loss with subsequent crop or
other vegetation land cover t- 9

LFt TSBt see LDt

and are thus significantly correlated with drought damages in t. The temporal lag of 8

to 9 years ensures the exogeneity of these instruments to a change in urban size in the

current period. These drought patterns are shaped by long-term climate cycles and land

cover dynamics rather than the immediate, year-to-year alterations in city size (Cook

et al., 2018).

The land cover change from crop or shrub cover (Table B-1) to sealed surfaces with

a temporal lag of nine years serves as an instrumental variable for ∆C in equation two

as it is closely linked with urban expansion, which is typically a result of planned urban

development influenced by political, economic, and demographic factors. This variable

is chosen for its strong correlation with the urbanization process, as sealing surfaces is a

direct and measurable consequence of urban growth. Crucially, it is plausibly exogenous

to the specific process of tree cover loss leading to sealed or bare surfaces, as it reflects

broader urban planning decisions rather than responses to tree cover status or changes.

The reasoning for selecting instruments for flood damages is similar. Changes in city

size are generally too small to alter broader hydrological conditions that lead to flood

occurence. Outgoing longwave radiation (OLR)9, which correlates negatively with cloud

coverage (Wang et al., 2002), and the frequency of floods with varying temporal lags

depending on the region are therefore suitable instruments as they are related to larger-

scale environmental patterns, or in the case of the area of crops with a temporal lag

of nine years, multiplied with the frequency of floods a region’s vulnerability to flood

9We use data by Liebmann and Smith (1996) to calculate the mean annual OLR.
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damages and not to the year-to-year variations in urban expansion.10

As an instrument for tree cover loss without subsequent regrowth in the third and

fourth equations we use tree cover loss with subsequent crop, shrub or other vegetation

land cover with a temporal lag of nine years. These instruments capture other pathways

of tree cover loss beyond urban expansion, such as deforestation for agricultural land use

(Ehrhardt-Martinez et al., 2002), timber harvesting as well as other causes, such as wild

fires.

Since the variable measures tree cover change from nine years prior, it is plausible

to assume that it does not impact flood or drought damages in the present period of

analysis. Therefore, it fulfills the exogeneity assumption necessary for valid instruments.

Since the data initially has a panel data structure, we apply the SEM on the

country fixed-effects transformed data (Wooldridge, 2012). To test the robustness of

our results, we estimate two further models in addition to the SEM: We estimate

each equation separately using (i) a country and time fixed effects panel model with

heteroskedasticity robust standard errors clustered at the continent level as well as (ii) a

mixed effects model as robustness checks. In contrast to the SEM, these models cannot

capture the interrelation of the four equations as a system, but they have other virtues.

The panel model accounts for unobservable characteristics that are constant over time

within a country (country fixed effects) and common effects across countries in each

time period (year fixed effects), while accounting for potential intra-group correlations

within continents, which is important if observations on the same continent are spatially

correlated. The mixed effects model on the other hand allows for more complex error

structures in nested data and can model both fixed effects, here defined as region and

country fixed effects as well as random effects and thus address heterogeneity in the data

better than the linear panel model.

5 Results

5.1 Global average results

Tables 3 and 4 display the results of the estimation described in Section 4. The first

two columns show the results generated using the DesInventar data set, while the models

presented in columns 3 and 4 respectively rely on the more comprehensive EM-DAT

data. The results in the first and third columns were estimated by a 3SLS simultaneous

equation model (SEM), which was applied to the fixed effects transformed data, while

columns 2 and 4 display the results estimated with a panel model with country and year

fixed effects, heteroskedasticity robust standard errors and clustered standard errors at

10Flood frequencies before the year 2000 were extracted from Brakenridge (2016).
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the continent level (PLM).

Starting with Hypothesis 1, we find rather strong support across the data sets and

models for a positive impact of economic damages from drought events (LDt) on the

change in urban size ∆C. Only in the PLM model with the smaller Desinventar data

set (column 2), the effect is not statistically significant from zero. By contrast, the

association between economic flood damages (LFt) and changes in city size presents a

more complex picture, with significantly positive (PLM, EM-DAT), significantly negative

(SEM, Desinventar) or insignificant coefficient estimates. Different effects in different

world regions might contribute to this variation, and deserve a closer look in the

heterogeneity analysis. We also note that the control variables included in Eq. (1) have

the expected signs, e.g. urban nighttime lights NTLU,t as a pull factor are significantly

positive and the non-urban nighttime lights as a push factor NTLnU,t are significantly

negative across all models and data sets.

Turning to Hypothesis 2, we find strong support for a positive impact of a change

of the urban size ∆C on tree cover loss TSB. The coefficient estimates are positive and

statistically significant from zero at the 99% confidence level for all models and data sets.

Out of the three links we empirically investigate, the results provide least support

for Hypothesis 3, respectively for the effect of tree cover loss TSB on the economic

drought LD and flood damages LF . In the LD regression, the SEM model applied to

the EM-DAT data (column 3) is the only specification to yield a statistically significant,

positive coefficient. The results in the other columns are positive or negative, but

statistically insignificant. This variation in outcomes can be seen as indication for different

mechanisms at play across ecological environments and world regions, which might cancel

each other out in the global average. For the LF regression, the effects of TSB provide a

similarly heterogeneous picture as for the LD regression. The coefficients have positive or

negative signs in different specifications but are never statistically significant from zero.

Such disparities suggest that average results might mask important regional or context-

specific variations, pointing to the need for more localized analyses to fully understand

the complex dynamics behind Hypothesis 3.

We summarize the global average results about the links in the purported vicious

cycle in Figure 2. We conclude that the evidence is strongest for the link from a change

in urban size to deforestation (Hypothesis 2), while the other links are more ambiguous

in the global sample of regions likely due to the heterogeneity we are going to analyze

next.
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Table 3 – Global average results for Equations (1) and (2)

SEM PLMFE SEM PLMFE
Hypothesis 1: Dep. variable: Change in city size ∆Ct

LDt 1.1e-05 *** 1.8e-07 2.0e-05 * 1.6e-05 ***
(1.1e-06) (1.4e-07) (9.0e-06) (2.5e-06)

LFt -2.7e-06 *** 2.1e-08 2.9e-05 3.8e-06 ***
(5.3e-07) (4.4e-08) (2.1e-05) (8.3e-07)

NTLU,t 6.6e-02 *** 5.8e-02 *** 2.3e-02 . 2.2e-02 .
(6.0e-03) (5.5e-03) (1.3e-02) (1.3e-02)

PU,t 2.5e-06 *** 2.6e-06 *** 5.0e-06 *** 5.1e-06 ***
(6.0e-08) (5.4e-08) (7.8e-08) (7.3e-08)

PnU,t 5.4e-07 *** 5.3e-07 *** 6.7e-07 *** 7.3e-07 ***
(1.3e-08) (1.1e-08) (5.3e-08) (2.6e-08)

NTLnU,t -9.2e-02 *** -9.5e-02 *** -2.1e-01 *** -1.7e-01 ***
(1.1e-02) (1.0e-02) (2.2e-02) (2.2e-02)

FtC,t 2.2e-04 7.3e-05 2.1e-04 3.2e-04
(1.9e-04) (1.9e-04) (4.6e-04) (4.6e-04)

TSBt 4.0e-01 *** 1.8e-01 *** 3.1e-02 *** 3.8e-02 ***
(4.6e-02) (1.3e-02) (9.3e-03) (3.6e-03)

SEM PLMFE SEM PLMFE
Hypothesis 2: Dep.variable: Tree cover loss TSBt

∆C 4.3e-01 *** 8.3e-02 *** 6.1e-01 *** 7.5e-02 ***
(1.3e-01) (5.6e-03) (1.0e-01) (6.5e-03)

Tt 5.5e-06 *** 6.1e-06 *** 1.0e-04 *** 9.9e-05 ***
(1.2e-06) (1.2e-06 ) (1.1e-06) (9.1e-07)

PnU,t -2.0e-07 *** -3.8e-08 *** -4.2e-07 *** 7.2e-08 .
(5.6e-08) (9.3e-09) (1.2e-07) (3.7e-08)

NTLnU,t 4.6e-02 *** 1.6e-02 * 2.0e-01 *** 8.5e-02 ***
(1.2e-02) (6.6e-03) (3.0e-02) (2.6e-02)

Crt -5.5e-06 . -1.1e-06 -4.6e-05 *** -7.1e-05 ***
(3.3e-06) (2.1e-06) (1.2e-05) (6.5e-06)

St -4.1e-07 5.4e-07 1.3e-05 . 2.8e-05 ***
(2.0e-06) (1.9e-06) (7.2e-06) (4.2e-06)

Vt 1.9e-05 *** 1.4e-05 *** 2.3e-05 *** 1.4e-05 ***
(4.1e-06) (1.5e-06) (4.1e-06) (2.4e-06)

Bt 2.9e-07 1.9e-07 9.1e-06 ** 9.1e-06 **
(9.3e-07) (9.3e-07) (3.0e-06) (3.0e-06)

sealed -2.1e-03 * -6.8e-04 *** -1.8e-03 * -4.7e-05
(1.1e-03) (1.7e-04) (7.5e-04) (1.5e-04)

PU,t -6.7e-07 *** 4.2e-10 -1.9e-06 *** 1.8e-08
(1.6e-07) (4.3e-08) (2.3e-07) (1.1e-07)

NTLU,t -3.1e-02 *** -9.7e-03 ** -1.9e-03 1.7e-02
(8.3e-03) (3.6e-03) (1.6e-02) (1.5e-02)

FtC,t -1.4e-04 -7.1e-05 -7.3e-06 3.9e-05
(1.3e-04) (1.2e-04) (5.5e-04) (5.4e-04)

Data Desinventar EM-DAT
N 15,451 36,938
Years 2001-2013 2001-2018

3SLS estimation of the simultaneous equation model with instrumental variables (SEM) on the demeaned transformed
data compared to the results of panel model estimation with country and time fixed effects, heteroskedasticity robust
standard errors and clustered standard errors at the continent level (PLMFE) across datasets. Coefficient estimates
are presented with standard errors in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table 4 – Global average results for Equations (3) and (4)

SEM PLMFE SEM PLMFE
Hypothesis 3: Dep. variable: Economic Drought Damages LDt

TSBt 1.5e+01 -2.7e+01 1.4e+02 *** -1.7e+01
(2.6e+03) (7.5e+02) (3.7e+01) (8.7e)

Crt 8.7e-01 *** -1.3e-01 1.7e-02 6.6e-03
(1.6e-01) (1.7e-01) (1.1e-02) (1.0e-02)

St 2.1e *** 2.1e *** 5.9e-02 *** 6.3e-02 ***
(1.7e-01) (1.8e-01) (7.0e-03) (6.9e-03)

Tt -6.4e-02 5.5e-02 -1.9e-02 *** -4.1e-03 *
(1.0e-01) (1.1e-01) (3.9e-03) (1.8e-03)

Vt -1.2e *** -1.1e *** -4.5e-03 -1.8e-03
(1.3e-01) (1.3e-01) (3.5e-03) (3.4e-03)

Dt 4.3e+03 *** 4.0e+03 *** 8.5e+04 *** 8.4e+04 ***
(4.7e+02) (5.0e+02) (1.2e+03) (1.2e+03)

NTLnU,t -1.8e+02 -5.6e+02 -1.8e+02 *** -1.8e+02 ***
(5.8e+02) (5.9e+02) (4.3e+01) (4.3e+01)

PnU,t -3.7e-03 *** -1.1e-03 2.6e-05 4.7e-05
(7.8e-04) (8.0e-04) (6.0e-05) (6.0e-05)

NTLU,t -1.3e+01 4.6e+01 6.3e+01 * 5.2e+01 *
(3.2e+02) (3.2e+02) (2.5e+01) (2.5e+01)

PU,t 5.3e-03 . 7.2e-03 * 4.6e-04 ** 5.0e-04 ***
(3.1e-03) (3.1e-03) (1.5e-04) (1.5e-04)

SEM PLMFE SEM PLMFE
Hypothesis 3: Dep. variable: Economic Flood Damages LFt

TSBt 7.3e+03 -4.6e+02 2.0e+02 . -1.5e+01
(8.5e+03) (2.5e+03) (1.1e+02) (2.8e+01)

Crt -2.5e *** -2.0e-01 1.3e-01 *** 1.8e-01 ***
(5.5e-01) (5.7e-01) (3.3e-02) (3.3e-02)

St -2.3e-01 -1.8e-01 8.2e-02 *** 5.9e-02 **
(5.6e-01) (5.8e-01) (2.1e-02) (2.2e-02)

Tt -8.8e-02 -3.3e-01 -8.4e-03 2.1e-02 ***
(3.5e-01) (3.6e-01) (1.2e-02) (5.6e-03)

Vt 6.5e-01 4.2e-01 -9.7e-02 *** -1.2e-01 ***
(4.2e-01) (4.3e-01) (1.1e-02) (1.1e-02)

Ft 3.3e+03 *** -1.6e+01 8.2e+04 *** -1.1e+04 **
(1.0e+03) (1.6e+03) (1.7e+03) (3.9e+03)

NTLnU,t -1.9e+03 -1.0e+03 2.5e+02 . 7.5e+01
(1.9e+03) (1.9e+03) (1.3e+02) (1.4e+02)

PnU,t 9.8e-03 *** 3.9e-03 1.2e-03 *** 1.6e-03 ***
(2.6e-03) (2.6e-03) (1.8e-04) (1.9e-04)

NTLU,t 5.0e+02 4.1e+02 -1.1e+01 2.3e+01
(1.0e+03) (1.1e+03) (7.8e+01) (8.1e+01)

PU,t -1.4e-02 -1.5e-02 -3.7e-05 5.9e-04
(1.0e-02) (1.0e-02) (4.5e-04) (4.6e-04)

Data Desinventar EM-DAT
N 15,451 36,938
Years 2001-2013 2001-2018

3SLS estimation of the simultaneous equation model with instrumental variables (SEM) on the demeaned transformed
data compared to the results of panel model estimation with country and time fixed effects, heteroskedasticity robust
standard errors and clustered standard errors at the continent level (PLMFE) across datasets. Coefficient estimates
are presented with standard errors in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 2 – Synthesis of global average results.

5.2 Heterogeneous effects

How does the hypothetical vicious cycle - and the strength of its links - vary across

world regions? Since intuition as well as the global average results point towards

(spatial) heterogeneity in effects, we conducted the SEM analysis using EM-DAT for

each continent.11 As the urban expansion and EKC literature suggest results might

vary dependent on the economic/human development (Ehrhardt-Martinez et al., 2002,

Behnisch et al., 2022), Figure D-6 displays heterogeneity across Human Development

categories. We categorize the regions in our data by Human Development Index (HDI)

based on United Nations Development Programme (2024) and consolidate the high and

very high HDI categories into a single category.12 Please refer to Figures A-2 and A-3 for

an overview of the HDI categories across regions at the start and at the end of the study

period.

5.2.1 Analysis of heterogeneity in results across continents

In Figure 5.2.1, we show the spatial heterogeneity in results categorized by continent.13

Hypothesis 1, which had received rather strong support in the global average

analysis, nevertheless comes with considerable spatial heterogeneity. The positive effect

of drought damages on change in urban size (Figure 3a) seems to be most strongly driven

by Africa and North America, while it is weakly negative in Europe. By contrast, we find

a significantly positive link from economic flood damages on change in urban size (Figure

3b) on all continents except South America. Hence, on a continent-level the link from

flood damages to urban expansion is stronger than the global average results suggest.

For Hypothesis 2, which was unambiguous in the global average results, we also

find very strong support across regions (Figure 3c). The coefficients of the effect from

urban expansion on tree cover loss are positive and highly statistically significant in every

individual region. They are of highest magnitude in Europe, North America and Africa.

11Since the DesInventar data is more limited and has a clear focus on the Global South, we use the
EM-DAT data for this analysis, as this data covers regions in more countries, including the Global North.

12The HDI categories are low (HDI < 0.550), medium (0.550 ≤ HDI ≤ 0.699), high (HDI ≥ 0.700),
and very high (HDI ≥ 0.800). Note that the categorization is by region; in particular middle-income
countries may have some high and low HDI regions.

13These results based on SEM estimation are complemented by robustness checks for each continent
and variable of interest using a two-way fixed effects estimator as well as a mixed effects models as
robustness checks, shown in Figures D-1 to D-5.
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Figure 3 – Continent level model effects based on the EM-DAT data set estimated with an
3-sls simultaneous equation model on the transformed data.Transformation: Fixed effects
transformation to account for panel structure of the data (Wooldridge, 2012). . p < 0.10,
* p < 0.05, ** p < 0.01, *** p < 0.001
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Concerning Hypothesis 3, the insignificant global average results seem to be a

composition effect of opposite results across continents. In North America, tree cover

loss has a significantly positive effect on economic drought damages (Figure 3d), while

the effect is negative in Africa. As we will discuss later, this heterogeneity in effects might

go in line with the different ecological environments and varying types of trees. Similarly,

the effect of tree cover loss on economic flood damages (Figure 3e) varies across continents.

They are positive and significant in Africa and North America in the SEM specification14,

while the sign is negative in Asia (and statistically significant in most models, see Figure

D-3).

In sum, the results indicate that the complete vicious cycle with regard to drought

damages is most strongly discernible in North America and with regard to flood damages

in Europe and Africa.

A heterogeneity analysis on continent level is, however, limited since it does not fully

address heterogeneity with respect to human development as an important factor in

collective and individual adaptation potential. Thus we proceed to Section 5.2.2.

5.2.2 Analysis of heterogeneity across Human Development categories

Besides the heterogeneity of results across continents, our findings also indicate that the

Human Development Index is a key factor in explaining the variation in results. Based

on the point estimates of the variables of interest across estimation strategies displayed

on Figure D-6, we identified the following mechanisms for each HDI category as shown

on Figure 4:

(a) Low HDI (b) Medium HDI (c) High and very High HDI

Figure 4 – Results across Human Development Index (HDI). Conclusive coefficient
estimates across estimation strategies with at least one strategy showing a statistically
significant effect are displayed by a black sign, whereas the grey sign indicates exclusively
insignificant coefficients.

Across all HDI categories, we find strong evidence of the link from urban expansion

to tree cover loss (Hypothesis 2), confirming our insights from the global averages and

continent-level analysis. The urban expansion process is reinforced by drought damages

(Hypothesis 1) in the low and high and very high HDI categories, while the results are

mixed in the medium HDI category. Flood damages, by contrast, have a positive effect

14The results for North America concerning the effect of tree cover loss on flood damages are however
not robust across specifications.
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Figure 5 – Observed conversion of tree cover to bare and sealed or agricultural surfaces
and urban expansion categorized by Human Development Index between 2001-2018 based
on ESA Land Cover CCI project team: Defourny (2019).

on urban expansion (Hypothesis 1) in regions with a high or very high HDI and decrease

urban expansion in regions with a low to medium HDI. Again, the effect of tree cover loss

without subsequent regrowth on damages (Hypothesis 3) contains most heterogeneity,

also across HDI categories. This points towards context specific regulation capacity and

ecosystem services driven by other factors than human development, as is also evident

from the continent-level results in the previous sub-section.

We sub-categorize the data further by combining the human and environmental

sources of heterogeneity, in particular HDI and the continent.15. Focusing on the

hypothesis with the most ambiguous results (Hypothesis 3), we see a positive effect of

tree cover loss on drought damages in low HDI African and high and very high HDI

North American regions, however these results are statistically insignificant. For the

impact of tree cover loss on flood damages, we find a positive coefficient in high and

and very high HDI European, and African regions as well as in low and medium HDI

North American regions, where only the results for Europe and Africa are statistically

significant. The absolute effect of urban expansion on tree cover loss is increasing with

HDI on all continents except South America (where the effect is highest in the medium

HDI category), see D-7c. In Figure 5, we see that conversion of tree cover with subsequent

agricultural use follows a kind of inverted U-shape depending on HDI category as one

would expect based on the EKC literature. However, urban expansion and tree cover loss

with subsequent bare or sealed land cover increase with human development.

Concluding our heterogeneity analysis, we look for those combinations of continent

and HDI where we find the most pronounced vicious cycles. Figure 6 displays the vicious

cycles with the strongest effects and where we cannot reject the three hypotheses for

either drought or flood events. Regions with such a pronounced vicious cycle can be

15Please refer to Appendix Figure D-7 for the point estimates of all variables of interest clustered by
continent and HDI

21



(a) High HDI African regions (b) High HDI Europe (c) High HDI North America

Figure 6 – Selected results across Human Development Index (HDI) and Continents. Note:
The high HDI category in this study subsumes the high and very high HDI categories
defined by the UNDP. Significant effects are displayed by a black sign, whereas the grey
sign indicates insignificant coefficients.

found on various continents (Africa, Europe, North America), but it is conspicuous that

the regions involved have a high HDI.

6 Discussion and Conclusions

In this study, we investigated the complex interplay between flood and drought damages,

their impact on urban growth, the influence of urban expansion on tree cover loss, and

how this, in turn, affects the severity of flood and drought damages. To investigate

the presence of this vicious cycle, we employed econometric methods on two compiled

data sets with varying spatial and temporal coverage. As the first study investigating

this interrelation by estimating a system of four equations, we explicitly modeled the

impact of human behavior in the form of land-use changes due to urban expansion,

along with the ensuing environmental consequences related to the climate regulation

services provided by tree-based ecosystems, and resulting costs for society in the form of

economic damages of extreme weather events. We have found evidence of the existence

of the vicious cycle at the global scale, yet some links are stronger than others. Our

results most strongly support the link from urban expansion to tree cover loss, and from

drought damages to urban expansion. There is more spatial heterogeneity for the role of

tree cover loss in attenuating or amplifying drought damages. Our sub-analyses show

that this vicious cycle with respect to drought damages is particularly pronounced in

North American regions with a high HDI. With respect to flood damages, the vicious

cycle is most evident in European regions with high HDI, as well as in African regions

with high HDI.

This leads to the question of the underlying mechanisms, in particular the role of

economic development. Previous studies focusing on droughts and floods as the drivers

of urbanization (Hypothesis 1) have highlighted the role of rural to urban migration

(Cattaneo and Peri, 2016, Ober, 2019, Peri and Sasahara, 2019). This migration channel

typically applies for poor and middle-income countries and can be thought to contribute
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to our strong results on the link from drought to urban expansion in Africa, including

high HDI African regions.16 It should be noted, however, that population growth in cities

also leads to a densification, particularly in low-income countries (Castells-Quintana

et al., 2021). Here we measure the increase in the urban extent because it matters for

the land use tradeoff and resulting deforestation. If the additional population from

rural to urban migration is primarily absorbed by densifying existing urban areas (e.g.

with informal settlements), it will not expand the urban area. This might explain why

we find stronger support for the urban expansion link in high HDI rather than low

HDI African regions. At the same time, rural to urban migration is unlikely to be the

driving force behind the corresponding results for Europe and North America. Different

urban planning policies and suburbanization might play a role; in fact, Behnisch et al.

(2022) observe urban expansion even in high-HDI areas without population growth,

sometimes even where population declines. Demand for housing and commercial space

is driven towards the urban outskirts, facilitated by zoning regulations that favor urban

expansion over densification in high-HDI countries (Behnisch et al., 2022). According

to Ehrlich et al. (2018), institutional fragmentation might be another factor facilitating

urban expansion and concurrent surface sealing in selected high-HDI regions. These

tendencies can be intensified by severe floods and droughts as we measure them. In high

HDI regions the comparatively higher insurance coverage and resulting insurance claims,

particularly in Europe and the USA (Allianz Global Corporate & Specialty, 2017) might

lead to rebuilding efforts that do not only restore but expand pre-disaster infrastructure

and housing also in the urban fringe. This link might be weaker in low and medium HDI

areas with less insurance cover. In fact, there might even be statistical undercounting

of economic damages of extreme events for this reason, which might contribute to the

weaker evidence of the link from economic damages of floods and droughts to urban

expansion in low HDI regions.

Our unambiguous findings of urban expansion increasing tree cover loss (Hypothesis

2) also warrant some discussion. This relationship intensifies with an increase in the

HDI (except in South America). This suggests a more intricate relationship than the

Environmental Kuznets Curve theory proposes, where deforestation is expected to

decline at higher levels of development (Ehrhardt-Martinez et al., 2002). As we have

shown, in our data the conversion from tree-based systems to agricultural areas exceeded

the conversion to bare and sealed surfaces between 2001 and 2018, indicating that tree

cover loss with no regrowth is still lower in absolute terms in the high and very high HDI

categories compared to the medium HDI category. Urban expansion, however, might

16African regions with a high HDI include metropolitan regions in Maghreb countries (Tunis in Tunisia,
Grand Casablanca in Morocco), tourism-based regions (Port Louis on Mauritius) and export-oriented
regions (Western Cape in South Africa, various gas-exporting Algerian regions).
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be a stronger driver of the conversion to sealed area, and it is more important in high

HDI regions than in the other HDI categories. Moreover, increasing population pressure

and increasing human development across the globe can be thought to impact this

relationship in the long run. DeFries et al. (2010) argues that urban demands also across

borders and continents drive conversion of tree cover to agricultural areas especially in

the Global South. This stresses that the EKC is a correlational construct and does not

justify the assumption that increasing human development solves the problem of tree

cover loss.

It is line with the literature that our findings on the link from tree cover loss to

economic damages of floods and droughts (Hypothesis 3) vary less systematically with

HDI but more with the continent and the dominating ecological environment (Beier

et al., 2015, van Dijk et al., 2009, Bradshaw et al., 2007). Since we specifically focus on

tree loss with subsequent surface sealing or bare land cover we capture processes that

are detrimental to the existing ecological functions of the respective parcel of land that

is cleared and sealed; a process difficult to reverse (Scalenghe and Marsan, 2009, Tobias

et al., 2018). Such sealing, as highlighted in our study, can create a scenario where the

ecological balance is not just temporarily disturbed but fundamentally reshaped, often

with long-term negative impacts on biodiversity and ecosystem services. In line with

van Dijk et al. (2009), our study design and resulting nuanced findings clearly emphasize

the importance of delineating the specific forms of tree cover loss being examined and

consider land cover post tree cover loss.

Our study has some limitations that are worth discussing. Working with worldwide

regional data, sets the focus on breadth which necessarily comes at the expense of

depth. In particular, investigating the loss of tree cover due to urban expansion and the

associated regulating services at the aggregated province (NUTS 1) level poses several

challenges. Firstly, at this scale, there is a risk of oversimplifying complex environmental

dynamics, as the heterogeneity in drivers and ecosystem functions within regions may

be masked. Secondly, the aggregation process can lead to a loss of fine-grained, local

information about land cover distribution, which may be crucial for understanding how

specific ecosystems interact with and provide regulating services to their immediate

surroundings. This aggregated approach may miss subtle but significant variations in

land-use patterns and their impacts on regulating services, potentially overlooking critical

nuances in ecosystem functioning. Regional studies focusing on specific areas in detail

can obviously take these particularities better into account and offer insights that are

more pertinent to individual regions. However, analyzing the nexus between extreme

weather events, urban expansion, and tree cover loss on a global scale with continent-

and HDI-specific sub-analyses, as we did in this study, offers the advantage of providing
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a comprehensive, policy-relevant understanding of these complex interactions, while also

enabling the identification of global hotspots. Furthermore, the literature discussed in

section 2.3, finds that tree cover loss has a spatial lag when affecting drought damages.

According to Smith et al. (2023), the effects of tree cover loss might manifest themselves

in distances of up to hundreds or thousand kilometers away from the original place of

deforestation. Thus, we consider aggregating the available data at the NUTS 1 level and

combining this with a multi-level analysis as a sensible approach in this context. Yet, it

should be noted that spatial spillovers to other regions are not specifically considered in

our approach (beyond controlling for their impact on spatial error correlation). A more

nuanced analysis of spillovers between regions would be an interesting avenue for future

research.

A further caveat relates to the data quality. The heterogeneity in our results,

could be partly attributed to the limitations in the disaster data used, specifically

the damage estimates which are not consequently reported for all drought and flood

events and might also vary in the degree to which they are consistently documented

in regions across HDI categories17 By working with two different data sets, we try to

minimize this drawback. At the same time, data quality is always an issue in global

studies of this scope. For instance, the definition of urban or sealed land cover in this

study relies both on the definition of urban areas in Commission et al. (2016) and on

DLR (2016) and the results of this study should be interpreted in this context, exclusively.

Despite these caveats, our results on the vicious cycle and its strength across continents

and income levels provides valuable results for policymakers. Even though some national

and supranational governments acknowledge the sustainability challenges of urban

expansion (European Environment Agency, 2016) and have set in place containment

policies - some European countries, have for instance set a targets for limiting land

consumption for residential purposes and infrastructure development- there are rarely

mechanisms in place to ensure that the targets are met (Bovet et al., 2018). In the face of

urban expansion, setting realistic containment targets and establishing effective incentives

is crucial for policymakers to balance land preservation with development needs. Beyond

just the regulation of land use, a holistic approach is necessary to address the broader

spectrum of sustainability objectives, since limiting urban sprawl may incur trade-offs

with housing affordability (Bovet et al., 2018). In conclusion, our study underscores the

intricate relationship between urban expansion, tree cover loss, and their impacts on flood

and drought damages on the global average and its regional particularities. Our findings

highlight the critical need for nuanced, region-specific policies which acknowledge the

17Panwar and Sen (2020), highlight that the two disaster datasets we used in this study, which vary
extensively in spatial and temporal coverage, often present considerable discrepancies in reported damage
estimates. This variability underscores the challenges in obtaining consistent and reliable disaster data.
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complex dynamics of urban expansion, tree cover loss, and their interplay with natural

disasters. As urbanization continues to accelerate globally, understanding and addressing

these feedbacks is crucial to mitigate the negative effects on ecosystems and human

society.
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A Appendix: Data Summary
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(a) Change in city size in km2 aggregated between
2000 and 2013 (DesInventar)

(b) Change in city size in km2 aggregated between
2000 and 2018 (EM-DAT)

(c) Economic drought damages in US $ aggregated
between 2000 and 2013 (DesInventar)

(d) Economic drought damages in US $ aggregated
between 2000 and 2018 (EM-DAT)

(e) Economic flood damages in US $ aggregated
between 2000 and 2013 (DesInventar)

(f) Economic flood damages in US $ aggregated
between 2000 and 2018 (EM-DAT)

(g) Tree cover loss with subsequent sealed or bare
land-cover in km2 aggregated between 2000 and
2013 (DesInventar)

(h) Tree cover loss with subsequent sealed or bare
land-cover in km2 aggregated between between
2000 and 2018 (EM-DAT)

Figure A-1 – Spatial distribution of variables of interest
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Figure A-2 – Initial Human Development Index category of included NUTS-1 regions in
2001.
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Figure A-3 – Initial Human Development Index category of included NUTS-1 regions in
2018.
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Table A-1 – Included variables

Variable Description Source

Ct city area/size ESA Land Cover CCI project team: Defourny (2019)
TSBt Treecover loss with subsequent surface sealing or bare area ESA Land Cover CCI project team: Defourny (2019)
LFt Economic losses from floods UNISDR (nd), Guha-Sapir et al. (2009)
LDt Economic losses from droughts UNISDR (nd), Guha-Sapir et al. (2009)
PU,t population count (urban) Global High Resolution Population Denominators Project (2018)
PnU,t population count (non-urban) Global High Resolution Population Denominators Project (2018)
NTLnU,t mean NTL (non-urban) Bluhm and Krause (2022), Li et al. (2020)
NTLU,t mean NTL (urban) Bluhm and Krause (2022), Li et al. (2020)
Ft Number of floods UNISDR (nd), Guha-Sapir et al. (2009)
Dt Number of droughts UNISDR (nd), Guha-Sapir et al. (2009)
FtC,t Fatalities from violent conflicts Sundberg and Melander (2013), Davies et al. (2023)
Tt Tree cover ESA Land Cover CCI project team: Defourny (2019)
St Shrub cover ESA Land Cover CCI project team: Defourny (2019)
Vt Other vegetation ESA Land Cover CCI project team: Defourny (2019)
Bt Bare ground ESA Land Cover CCI project team: Defourny (2019)
Crt Crop cover ESA Land Cover CCI project team: Defourny (2019)
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B Appendix: Land cover and land cover change

variables

To calculate land cover changes while considering consecutive land cover, we utilized the

annual land cover satellite products by ESA Land Cover CCI project team: Defourny

(2019) spanning from the year 1999 to 2020. We applied the OpenLand R package Exavier

and Zeilhofer (2021) to compute the area of land cover changes for each class, as classified

in the first column of Table B-1. The resulting contingency table encompasses land cover

transitions for all input rasters of a time series and the area of a specific land cover class

that remains unchanged between two consecutive years.

Next, we implemented a two-stage aggregation process for land cover change variables,

as well as for stock variables (the area within each class that was unaffected between

two years). This two-stage aggregation enables us to conduct tests for heterogeneous

effects with regard to tree cover as a robustness check. This is based on the different

ecosystem services provided by broadleaved and needle-leaved forest ecosystems. Table

B-1 illustrates the initial stage of this aggregation procedure. In the second step,

we aggregated a tree cover stock variable from the new classes: Broadleaved, Needle,

Mixed, and Unspecified. Subsequently, we constructed a tree cover loss variable from the

instances where land cover transition occurred from the defined tree cover classes to either

bare or sealed categories. Our analysis specifically emphasizes transitions to ’sealed’

and ’bare’ land cover classes to account for quasi-irreversible land changes—excluding

potential regrowth—and recognizing that surface sealing is often preceded by a ’bare’

land phase, indicating a non-reversible transition to urbanization or infrastructure

development.
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Table B-1 – Aggregated Land Cover Classes based on ESA Land Cover CCI project team:
Defourny (2019)

Value Label Aggregated Class
10 Cropland rainfed Crop
11 Herbaceous cover Other vegetation
12 Tree or shrub cover Unspecified
20 Cropland irrigated or post-flooding Crop
30 Mosaic cropland (>50%) / natural vegetation Crop
40 Mosaic natural vegetation / cropland (<50%) Crop
50 Tree cover broadleaved evergreen closed to open Broadleaved
60 Tree cover broadleaved deciduous closed to open Broadleaved
61 Tree cover broadleaved deciduous closed Broadleaved
62 Tree cover broadleaved deciduous open Broadleaved
70 Tree cover needleleaved evergreen closed to open Needle
71 Tree cover needleleaved evergreen closed Needle
72 Tree cover needleleaved evergreen open Needle
80 Tree cover needleleaved deciduous closed to open Needle
81 Tree cover needleleaved deciduous closed Needle
82 Tree cover needleleaved deciduous open Needle
90 Tree cover mixed leaf type Mixed
100 Mosaic tree and shrub / herbaceous cover Unspecified
110 Mosaic herbaceous cover / tree and shrub Other vegetation
120 Shrubland Shrub
121 Evergreen shrubland Shrub
122 Deciduous shrubland Shrub
130 Grassland Other vegetation
140 Lichens and mosses Other vegetation
150 Sparse vegetation Other vegetation
151 Sparse tree Unspecified
152 Sparse shrub Shrub
153 Sparse herbaceous cover Other vegetation
160 Tree cover flooded fresh or brakish water Unspecified
170 Tree cover flooded saline water Unspecified
180 Shrub or herbaceous cover flooded Other vegetation
190 Urban areas Sealed
200 Bare areas Bare
201 Consolidated bare areas Bare
202 Unconsolidated bare areas Bare
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C Appendix: Hypothesized effects
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Variable HypothesisReference Interpretation
Dependent variable: ∆C

LFt + Hypothesis 1 Economic losses from floods are a
driver of urbanization

LDt + Hypothesis 1 Economic losses from droughts as
a driver of urbanization

FtC,t + Camargo et al. (2020) Armed conflicts force the rural
population to migrate to safer
urban areas.

TSBt + Adams and Adger (2013) Environmental factors affect
migration decisions through
their impact on ’place utility’,
a concept encompassing both
emotional and practical ties to a
location.

NTLU,t + Düben and Krause (2021) City growth goes in line with
increasing economic activity as
proxied for by lights.

PnU,t + D. da Mata et al. (2007) Rural population supply
potential

PU,t + Xing and Zhang (2017)
Baum-Snow and Pavan
(2011)

Larger urban areas have a
stronger pull factor, e.g. due to
wage premia and more amenities.

NTLnU,t - D. da Mata et al. (2007) Increases of rural income
opportunities reduce the “rural
push” to urban areas.

Table C-1 – Hypothesized effects of variables in Equation (1)
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Variable HypothesisReference Interpretation
Dependent variable: TSBt

∆C + Hypothesis 2 Change in city area as a driver of
tree cover loss

Tt, St, Vt, Bt, sealed -/+ Stock variables controlling for the
variablity in land cover.

PnU,t + Ehrhardt-Martinez et al.
(2002) Destiartono and
Hartono (2022)

Non-urban population drive tree
cover loss through land take for
agriculture

NTLnU,t - Destiartono and Hartono
(2022)

Higher economic development is
associated with lower rates of
deforestation

Ct + see Section 2.2 More agriculture-reliant countries
have higher rates of tree cover loss

PU,t DeFries et al. (2010) The demand for agricultural
products from an increasing
urban population is a driver of
tree loss

NTLU,t +/- Destiartono and Hartono
(2022) Behnisch et al.
(2022)

Higher economic development is
associated with lower rates of
deforestation but also higher
rates of urban expansion

FtC,t -/+ Christiansen et al. (2022) Violent conflict can both increase
and reduce tree loss

Table C-2 – Hypothesized effects of variables in Equation (2)
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Variable Hypothesis Reference Interpretation
Dependent variable: LDt

TSB t + Hypothesis 3 Tree cover loss increases
drought damages

Tt, St, Vt -/+ Stock variables representing
different classes of
vegetation and their
regulatory abilities and
water needs, acknowledging
the nonlinear and
threshold-dependent nature
of ecosystem services

Bt

Crt + Area of crops that are
potentially exposed to
droughts

Dt + An increased frequency
of droughts increases the
probability of damages.

PU,t,PnU,t +/- The larger the population,
the more people are
potentially affected by
droughts but the better the
adaptation potential might
be.

NTLU,t, NTLnU,t - Higher economic
development enables better
adaptation to droughts
and lower dependence on
agricultural production.

Table C-3 – Hypothesized effects of variables in Equation (3)
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Variable HypothesisReference Interpretation
Dependent variable: LFt

TSB t + Hypothesis 3 Tree cover loss increases flood
damages

Tt, St, Vt - Frenne et al. (2021) Dhital
and Tang (2015)

Stock variables representing
different classes of vegetation
and their regulatory abilities,
acknowledging the nonlinear and
threshold-dependent nature of
ecosystem services

Bt + Dhital and Tang (2015) The fraction of bare ground
vs. vegetated soil increases flood
hazard.

Crt + Area of crops that are potentially
exposed to floods

Ft +/- An increased frequency of floods
increases the probability of
damages but might also increase
adaptation potential.

PU,t,PnU,t +/- The larger the population, the
more people are potentially
exposed to a flood, on
the other hand a higher
population correlates with
better infrastructure, warnings
systems and flood management.

NTLU,t, NTLnU,t +/- Higher economic development
might correlate with better flood
management and protective
infrastructure but also higher
values at risk.

Table C-4 – Hypothesized effects of variables in Equation (4)
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D Appendix: Further results and Robustness checks

Table D-1 – Testing instrument strength for the global average results using the EM-
DAT data base using an F-test. A significant test indicates sufficient instrument strength.
The Wu-Hausmann test is used to assess the exogeneity of the instrumental variables. It
compares the estimates from the IV regression model with those from an OLS regression.
A significant result suggests endogeneity in the model, indicating that the IV approach is
preferable to OLS. Since our model treats all tested variables as endogenous, we include the
tested instruments in our analysis, even when the Wu-Hausman test suggests the results
are not statistically significant.

df1 df2 statistic p-value Insr
Weak instruments (LD t) 3.00 36929.00 1471.24 0.00 cropdrought
Weak instruments (LF t) 3.00 36929.00 27.79 0.00 AnnualAvgOLR

Weak instruments (Treeloss no veg) 3.00 36929.00 2157.53 0.00 T2SH lag9
Wu-Hausman 3.00 36926.00 6.50 0.00

Weak instruments 1.00 36927.00 2186.48 0.00 needle lag9
Wu-Hausman1 1.00 36926.00 3.73 0.05

Weak instruments1 1.00 36927.00 2187.08 0.00 needle lag9
Wu-Hausman2 1.00 36926.00 0.00 0.97

Weak instruments2 1.00 36925.00 140.33 0.00 C2S lag9
Wu-Hausman3 1.00 36924.00 8.44 0.00
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Table D-2 – Testing instrument strength for the global average results using the
Desinventar data base using an F-test. A significant test indicates sufficient instrument
strength. The Wu-Hausmann test is used to assess the exogeneity of the instrumental
variables. It compares the estimates from the IV regression model with those from an OLS
regression. A significant result suggests endogeneity in the model, indicating that the IV
approach is preferable to OLS. Since our model treats all tested variables as endogenous, we
include the tested instruments in our analysis, even when the Wu-Hausman test suggests
the results are not statistically significant.

df1 df2 statistic p-value Insr
Weak instruments (LD t) 3.00 14360.00 80.18 0.00 mixed lag9
Weak instruments (LF t) 3.00 14360.00 32.68 0.00 cropflood

Weak instruments (Treeloss no veg) 3.00 14360.00 443.31 0.00 T2C lag9
Wu-Hausman 3.00 14357.00 16.21 0.00

Weak instruments 1.00 14358.00 1291.37 0.00 T2C lag9
Wu-Hausman1 1.00 14357.00 0.00 0.94

Weak instruments1 1.00 14358.00 1290.86 0.00 T2C lag9
Wu-Hausman2 1.00 14357.00 0.15 0.70

Weak instruments2 1.00 14356.00 28.02 0.00 C2S lag9
Wu-Hausman3 1.00 14355.00 2.40 0.12

xiv
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Figure D-1 – Robustness of results across estimation strategies for Europe using the EM-
DAT data (N=8532).
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Figure D-2 – Robustness of results across estimation strategies for Africa using the EM-
DAT data (N=9651).
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Figure D-3 – Robustness of results across estimation strategies for Asia using the EM-
DAT data (N=11364).
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Figure D-4 – Robustness of results across estimation strategies for South America using
the EM-DAT data (N=4394).

xviii



0e+00

1e−04

2e−04

3e−04

city_LD_t city_LF_t
Coefficient

E
st

im
at

e

Model Type

Mix

PLMFE

SEM−3sls−demean

Significance

Insignificant

Significant

(a) ∆C ← LDt and ∆C ← LFt (H1)

0.0

0.5

1.0

1.5

treecover_deltaC
Coefficient

E
st

im
at

e

Significance

Significant

Model Type

Mix

PLMFE

SEM−3sls−demean

(b) TSBt ← ∆C (H2)

0

400

800

LossD_Treeloss_no_veg LossF_Treeloss_no_veg
Coefficient

E
st

im
at

e

Model Type

Mix

PLMFE

SEM−3sls−demean

Significance

Insignificant

Significant

(c) LDt ← TSBt and LFt ← TSBt (H3)

Figure D-5 – Robustness of results across estimation strategies for North America using
the EM-DAT data (N=4327).
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Figure D-6 – Model effects by Human Development Index (HDI) category based on the
EM-DAT data set estimated with a 3sls SEM, a panel and mixed effects model.
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Figure D-7 – Model effects by Human Development Index (HDI) and continent based on
the EM-DAT data set estimated with a panel and mixed effects model. The instrumental
variables necessary for SEM estimation are not sufficiently strong in this sub-categorization
in all cases, thus we omit this estimation procedure win this sub-categorization of the data.
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