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Abstract:  
 

In this paper, we take a global view at air pollution looking at countries and cities worldwide. 
In doing so, we revisit the relationship between population density and air pollution, using i) a large 
panel of countries with data from 1960 to 2010, and ii) a unique and large sample of more than 1200 
(big) cities around the world, combining pollution data with satellite data on built-up areas, population 
and light intensity at night at the grid-cell level for the last two decades. At the country level, we find 
that higher density in urban areas is associated with lower CO2 and PM2.5 emissions per capita. This 
result is supported at the city level; denser cities show lower emissions per capita. Our findings are 
robust to several controls and different specifications and estimation techniques, as well as different 
identification strategies. In our city level analysis, we also investigate the role of various characteristics 
of cities, in particular their average income, size and spatial structure (indicating within-city 
differences in density). We find evidence of an Environmental Kuznets Curve between economic 
development and pollution and that a polycentric city structure leads to lower pollution in the largest 
urban areas, while monocentricity seems beneficial for smaller cities. 
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1. Introduction 
 

Population growth and global warming are two of the most pressing challenges that 
humanity faces in the 21st century. Increasing populations lead to higher population densities 
almost everywhere, but with ongoing urbanization, this will mainly translate into larger and, 
in many cases, denser cities. One important side effect of urban life is pollution. Pollution is 
an important determinant of housing prices (Chay and Greenstone 2005) and location choice 
(Banzhaf and Walsh, 2008; Bayer et al., 2009), and exposure to pollution is known to 
significantly affect health, human capital and productivity (see for instance Graff Zivin and 
Neidell, 2013; Kahn and Walsh, 2015; Brauer et al. 2015). According to the World Health 
Organization, more than 4 million deaths every year worldwide are estimated to be directly 
related to outdoor air pollution (WHO 2018).  

 A larger population, other things equal, is expected to increase levels of air pollution. 
However, as populations grow their geographical distribution changes, generally with more 
people living in urban areas and cities of growing size. These changes in the spatial 
distribution of population and economic activity are likely to play a relevant role in how 
emissions per capita (and therefore pollution) evolve. Nevertheless, the relationship between 
the spatial distribution of population and the evolution of emission per capita is far from 
evident, and global evidence to date on this relationship, and in particular on the role of 
population density in continuously growing cities, is limited and inconclusive (Ahlfeldt and 
Pietrostefani, 2019).1 

In this paper, we take a global view at air pollution looking at countries and cities 
worldwide. In doing so, we revisit the relationship between population density and different 
types of greenhouse gas emissions, using i) a large panel of countries with data from 1960 to 
2010, and ii) a large and unique sample of more than 1200 (big) cities around the world with 
data for the last two decades. In our country level analysis, we pay special attention to a factor 
omitted in the literature to date, namely, density in urban areas.2 Along these lines, we 
complement our analysis by looking at cities. In our city-level analysis, we investigate how 
the relationship between population density and emissions per capita is shaped by various 
characteristics of cities, including their size, average income and spatial structure. For our 
analysis, we combine data from several sources, including data from air quality stations 
around the world, national and international statistics, and satellite imagery. In particular, we 
use city-level data from the European Commission’s Global Human Settlement Layers 
(GHSL) from the Urban Centre Database (Florczyk et al, 2019) and different measures for 
the urban form for our 1234 cities based on satellite data on night-time lights (Bluhm and 
Krause 2018).  

 Our paper expands the literature on the link between population dynamics and 
pollution. Previous studies have usually focused on population and density at the country 
level (Cole and Neumayer, 2004; Martínez-Zarzoso et al., 2007; Poumanyvong and Kaneko, 
2010; Gollin et al., 2017), without exploring in much depth the role of cities. Papers from 
the urban economics literature which investigate the relationship between population 
dynamics and pollution at the city level typically look at a single country and/or have a limited 
sample size (Glaeser and Kahn, 2010; Zheng et al., 2011; Hilber and Palmer, 2014). By 
contrast, a global and comprehensive analysis of the relationship between density and air 

                                                        
1 From a more theoretical point of view, this link especially depends on transports, whether from trade or 
commuting, that are themselves shaped by city structure (Gaigné et al. 2012, Denant-Boemont et al. 2018). 
2 Population density at the country level and density in urban areas may diverge widely, as our data shows (see 
Table 1). To take an example, comparatively speaking Egypt has low overall population density, but in contrast 
it has a very high density in urban areas, including high density in its main cities such as Cairo. 
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pollution that considers the role of cities with their internal structure is missing in the 
literature. With this paper, we aim to fill this gap. We provide at least three main contributions 
to the literature. First, we provide a global analysis of air pollution by looking at more than 
180 countries and more than 1200 cities (while previous papers have, for example, looked at 
75 cities). Second, we analyze the role of density in urban areas and other potentially relevant 
factors neglected by the literature to date. Moreover, we study the role of several city 
characteristics, such as urban structure, as determining factors in the density-emissions 
relationship.  

Our results at the country level suggest that while higher total population density is 
associated with higher emissions per capita, the opposite happens when we look at density 
in urban areas; higher density in urban areas is associated with lower emissions per capita. 
This novel result is supported in our analysis at the city level: denser cities show lower 
emissions per capita. Using our global sample of cities, we also find novel evidence of an 
Environmental Kuznets Curve (EKC) between economic development and pollution, and 
that a polycentric city structure leads to lower emissions per capita in the largest cities, while 
monocentricity is more beneficial for smaller cities. 

The rest of this paper is structured as follows: Section 2 relates our work to other 
theoretical and empirical papers in the literature. In Section 3, we perform our empirical 
analysis: first deriving an empirical specification (in section 3.1) to then study the density-
emissions relationship at the country level (in section 3.2) and at the city level (in section 3.3). 
Finally, Section 4 discusses and concludes.3  

 

2. Population, density and pollution: literature review 

 

Air pollution is today a main challenge worldwide. As populations worldwide grow, 
total pollution emitted is expected to increase. However, the relation between growing 
populations and emissions per capita is not straightforward. The evolution of emissions per 
capita, and the population density-emissions relationship, is likely to depend on several 
factors, including affluence levels, productive technologies and demand patterns. The 
literature studying emissions has in fact relied on what is called the IPAT model, according 
to which environmental Impact (I) is a (positive) function of population size (P), affluence 
(A) and environmentally damaging technology (T). Relying on the IPAT model, several 
papers have explored the role of demographic factors on air pollution at the country level 
(see for instance Erlich and Holdren, 1971; Dietz and Rosa, 1997; Cole and Neumayer, 2004; 
Martinez-Zarzoso et al., 2007). Conceptually, one can distinguish the Malthuasian (1798) 
from the Boserupian (1981) view: according to the first theory, population growth 
overexploits resources and its increased demand for power, industry and transportation 
raises emissions per capita (Birdsall, 1992). Holdren (1991) notes that settlement changes 
induced by population growth may result in “more transport – per person- in resources, 
goods and people” (p.247). By contrast, arguing along the lines of Boserup, increases in 
population – and in particular in population densities – are helpful for fostering innovation, 
for example in agricultural technology and for saving energy (see for instance Simon, 1981). 
For high population densities, especially in urban areas, agglomeration economies and lower 
transport costs per person are expected (Ahlfeldt and Pietrostefani, 2019).4  

                                                        
3 The Appendix of the paper contains supplementary material.  
4 The New Economic Geography can also shed light on the density and transport-related emissions relationship 
at the country level. Krugman (1991) has shown that larger markets attract more firms due to increasing returns 
to scale in a self-reinforcing way. Accordingly, a country with large population density should trade less - across 
regions - and consequently we might expect a decrease in transport- related emissions per capita at the country 
level. But according to Helpman (1998), dispersion forces may lead to population being less concentrated and 
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From an empirical perspective, results on the population-emissions per capita 
relationship at the country-level, have so far been inconclusive. Cole and Neumayer (2004) 
and Poumanyvong and Kaneko (2010) find that population increases are matched by 
proportional increases in CO2 emissions. However, Martínez-Zarzoso et al. (2007) find that 
for old, more developed EU member states, population increases in the 1975-1999 period 
are associated with decreases in emissions per capita; while for newer, less developed EU 
member states, the opposite happens: a higher population is associated with higher emissions 
per capita. In a similar vein, Shi (2003) finds that the impact of population change on 
emissions is much more pronounced in developing than in developed countries.  

Focusing on the affluence-emissions relationship, several papers have explored the 
role of economic growth and development (see for instance Grossman and Krueger, 1993, 
1995). A key intuition in this literature is the Environmental Kuznets Curve (EKC), 
according to which the income-emissions relationship follows an inverted-U pattern, with 
emissions per capita going up at early stages of development, but then declining as 
development proceeds. Empirical evidence on the EKC at the national level has been 
provided, for example, by Schmalensee et al. (1998), Panayotou et al. (1999), and Andreoni 
and Levinson (2001). Using night-time lights rather than GDP data, Kacprzyk and Kuchta 
(2020) have recently found an EKC with an even lower turning point, although the main 
results still hold.  

Beyond the IPAT model, at the national level emissions per capita may also depend 
on the spatial concentration of population, including not only density, but also urbanization 
rates. A higher urban rate can be expected to lead to higher emissions due to the typically 
more polluting-intensive behavioral patterns of those in urban areas; Ponce de León and 
Marshall (2014) show that a 1% increase in urbanization correlates with a 0.95% increase in 
total emissions. Cole and Neumayer (2004), as well as Poumanyvong and Kaneko (2010), 
also find evidence of this emissions-increasing role of urbanisation, especially in middle-
income countries. But Martinez-Zarzoso and Maroutti (2011) find that the urbanization-
emissions relationship actually follows an inverted-U pattern, with emissions per capita 
falling back with further increases in urbanization, probably suggesting differentiated 
patterns in the urban process at different stages of development.5 Nevertheless, none of these 
papers empirically considers the actual density and form of urban areas.  

The study of the determinants of air pollution has recently been complemented by 
papers analyzing emissions in cities. At the city level, the determinants of emissions per capita 
may be similar to that at the country level, with affluence and technology playing an 
important role. But emission per capita may also depend on the size, density and spatial 
structure of the city (see Kahn 2006). However, the empirical literature to date studying the 
density-emissions per capita relationship at the city level is still limited and inconclusive 
(Ahlfeldt and Pietrostefani 2019).6 Papers to date have focused either on specific countries 

                                                        
distributed among a system of cities. In this case, and especially if transports costs are low, dispersion of the 
urban population might increase interregional trade but decrease transport at the city level – such that you 
might observe an increase in country’s emissions per capita but a decrease in emissions at the city level, because 
of less congestion (see Brinkman 2013). 
5 These results are usually explained by the “ecological modernisation” and “urban environmental transition” 
theories that suggest that, in low-income countries, urbanisation represents early modernisation, which is 
associated with higher emissions per capita. By contrast, in high-income countries, modernisation represents 
adoption of more ecologically friendly technologies. 

6 Ahlfeldt and Pietrostefani (2019) point out that a higher density is usually linked to agglomeration economies, 
lower transport costs and less pollution associated with commuting. The negative effects of density, on the 
other hand, include higher traffic congestion and a loss of open and recreational space, which would again drive 
up pollution. In their meta study, they find ambiguous results as to which effect dominates. 
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or limited samples. Glaeser and Kahn (2010), relying on carbon dioxide emissions in 66 U.S. 
cities in the year 2000, show that emissions per capita fall with density. Zheng et al. (2011) 
reach similar findings using data for 74 Chinese cities in 2006. Hilber and Palmer (2014) also 
suggest an emissions-reducing role of density relying on panel data for 75 global cities from 
2005 to 2011. This emissions-reducing role of density is usually explained by the fact that 
high density allows cities to exploit economies of scale for urban infrastructure, reduce car 
usage and commuting distances - the “compact city theory” (see for instance Newman and 
Kenworthy, 1989; Jenks et al., 1996; Burton, 2000; Capello and Camagni, 2000; Liddle, 2004 
and Chen et al., 2008). However, it has also been argued that increasing urban density may 
cause more congestion, overcrowding and greater air pollution (Breheny, 2001; Rudlin and 
Falk, 1999).  

The literature has also analysed the relation between the spatial structure of cities and 
pollution. Theoretical insights tend to consider general equilibrium effects of location 
choices, in terms of transport efficiency, congestion and housing prices. An important 
prediction from these theoretical papers is that, as cities grow, more polycentric urban 
structures can lead to lower emissions per capita. The main reason behind this is that the 
average distance from residence to workplace is expected to be lower in denser and 
polycentric urban areas than in sparse, monocentric ones (see for instance Gaigné et al. 2012, 
Denant-Boemont et al. 2018).7 Evidence on the reduction of commuting as density increase 
has been shown by Duranton and Turner (2018) and Blaudin de Thé et. al (2018) for 
American and French cities, respectively.8 But empirical evidence on the role of the spatial 
structure of cities on emissions is very scarce, usually focusing on cities within a single 
country (Cirillo and Veneri, 2014, for Italy) or limited samples (Hilber and Palmer, 2014, for 
74 global cities).9  

A global analysis of the relationship between density and emissions per capita using 
a large data set for countries and cities is still missing in the literature. Our study aims to fill 
this gap and consequently also combine the two strands of the empirical literature at the 
country and city level. We study the density-emissions relationship looking at 182 countries 
and more than 1200 cities worldwide, for the last decades. At the country level, we pay special 
attention to the role of density, urbanization and density in urban areas. As noted, theoretical 
insights on the potential emissions-reducing effect of density usually rely on the economies 
of scale than come with proximity, something than mainly occurs in urban areas. Total 
population density and urban rates, as traditionally considered in the literature, do not tell us 
anything about this.10 We complement our analysis looking at cities, providing global 
evidence on the role of population size, density and several measures of spatial structure. 

                                                        
7 Focusing on potential policy interventions, other papers have explored the carbon footprint of a city system, 
using different spatial models that explicitly consider the land use and city shape, arriving at the main conclusion 
that an optimal carbon taxation can make a polycentric city greener (Tscharaktschiew and Hirte, 2010, Larson 
et al., 2012, Borck and Brueckner, 2018). 
8 Urban infrastructure, and in particular transport infrastructure, has also been shown to play a fundamental 
role in the evolution of the spatial structure of cities as well as in that of emissions. Without adequate urban 
infrastructure, greater urban density can lead to more emission per capita (see Burgess, 2000). Gonzalez-
Navarro and Turner (2018) use night-time lights to show that subway extensions cause cities to decentralize. 
And subway network expansions, in turn, can reduce particulate concentration, as shown by Gendron-Carrier 
et al. (2018) using global data. 

9 Other papers have focused on particulate exposure using satellite data. Gollin et al. (2017) find outdoor air 
pollution to be associated with population density in places like China, India, and the U.S, but not in Sub-
Saharan Africa (SSA), probably given the low manufacturing intensity of SSA urban areas. Aldeco et al. (2019) 
also use satellite data to study particulate exposure and highlight the relevance of country-level determinants. 
10 Countries can have more cities and more people living in urban areas, but whether the actual density in urban 
areas increases or not is unclear unless you directly measure it as we do. 
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Using different scales allows us to better understand and detail the density-emissions 
relationship.  

 

3. Density and pollution: empirical analysis 

 

3.1. Deriving an empirical specification 

 

To derive an empirical specification for our empirical analysis, both at the country 
and city level, we rely on the IPAT model, as given by Equation 1 and as commonly used in 
the literature:11   

  I = PθAφT,       (1) 

Considering logs, the stochastic version of Equation (1) defines pollution as a linear 
function of population, affluence and technology, suitable for regression analysis (the so-
called STIRPAT model): 

  log(Iit) = α +  θlog(Pit) + φlog(Ait) +  βlog(Tit) +  ϵit  (2) 

where sub-index i refers to the unit of observation, either countries or cities, and t to the 

different periods in time. ϵit is an idiosyncratic shock. For Iit we consider CO2 emissions (in 

tons). For Pit we use total population or population density, while Ait and Tit  are proxied by 
income per capita and the share of industry in GDP, respectively. In our estimations, we also 
include time fixed effects, to control for global shocks, and country or city fixed effects, to 
control for country or city-specific, time-invariant characteristics, like geographical location. 
This means that our estimates are based on within country or city variation over time. Also, 
as we follow a log-log specification, our coefficients give us the elasticities we are looking 
for. Coefficients for φ will capture the affluence-emissions relationship (and a potential 

Kuznet’s curve if we include the square of income per capita), while coefficients for θ 
represent the emissions elasticity with respect to population (or population density).  

 

3.2. Density and pollution at country level 

 

Cross-country data and stylized facts 

To study the relationship between population density and pollution at country level, we build 
a global panel dataset, including information for more than 182 countries with data from 
1960 to 2010 (in 5-year observations). For pollution, we use data on CO2 emissions in tons. 
We look at total population, population density and urbanization rates, defined as the share 
of the population living in urban areas. This data comes from different sources, including 
the World Bank (WB) and the Penn World Tables (PWT). However, one innovation of this 
paper is to go further in terms of population density. To this end, we use the European 
Commission’s novel GHSL data (Florczyk et al. 2019), which combines Landsat satellite 
imagery on built-up area with census information (Pesaresi and Freire 2016). For the years 
1975, 1990, 2000 and 2015, the GHSL data classifies each pixel in a global grid of 1 km by 1 

                                                        
11 Beyond the literature on the IPAT model, this specification is found in many theoretical papers, with a few 
variations, explained by different levels of analysis: emissions at the household, firm, or aggregated city level. 
In Borck and Tabuchi (2018), pollution is modelled as a function of population – which itself depends on 
agglomeration forces, including income and technology – at the equilibrium. Similarly, Denant-Boemont et al. 
(2018) consider that pollution at the city level depends on commuting flows, which at the equilibrium are the 
result of agglomeration and dispersion forces. Calmette and Pechoux (2007) assume that emissions are 
proportional to production and the firm’s environmental performance while Larson et al. (2012) focus on 
household energy consumption which rely on income and the technology used.  
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km resolution according to the urban structure it belongs to, in particular whether it is high-
density urban center (more than 1500 people per sq km), urban cluster (smaller towns or the 
outskirts of large cities) or rural. This distinction allows us to compute, for our 182 countries, 
the average population density in urban areas as well as in urban centers.12 For our 
econometric analysis, and following our specification, we also control for other variables, like 
GDP per capita, industry share, and others. Table A.1 in Appendix A gives definitions and 
sources for the variables used. 

 Table 1 presents main descriptive statistics for our main variables at the country level, 
at the beginning and end of our sample period, distinguishing between developed and 
developing countries (based on the World Bank classification). Some clear stylized facts 
emerge. First, we see a clear increase in emissions (CO2 and Particulate Matter - PM2.5) in 
the last 50 years, with a more than doubling in CO2 emissions per capita. In per capita terms, 
the increase has been particularly pronounced in developing countries. In terms of CO2 per 
GDP, the increase has been more subdued and was entirely driven by developing countries: 
CO2 per GDP in developing countries in 2010 has even overtaken the corresponding 
emissions in developed countries. Second, while we also see a clear increase in population 
density, density in urban areas has actually decreased worldwide. This is in line with recent 
findings (see for instance OECD 2018) and probably reflecting sub-urbanisation in many 
countries in the last decades. Distinguishing countries by level of development, it can be seen 
that density in urban areas, as well as density in urban centers, is much higher in developing 
countries (see also Figure A.1 in Appendix A). 

 

Table 1: Descriptive statistics at country level, main variables 

 Beginning of Sample End of Sample 

 World Dev'd Dev'ing World Dev'd Dev'ing 

CO2 44.37 148.80 12.23 163.99 304.10 122.34 
 (251.59) (498.27) (74.66) (766.81) (849.99) (738.27) 
CO2 pc 2.0906 6.2927 0.8373 4.9744 10.4519 3.3460 
 (4.5115) (7.6636) (1.5584) (6.4040) (7.2383) (5.1294) 
CO2/GDP 0.4240 0.4506 0.4146 0.5045 0.3343 0.55754 
 (0.7044) (0.3009) (0.8026) (0.4299) (0.2162) (0.4654) 
PM25 pc 0.0070 0.0022 0.0083 0.5056 0.2230 0.5880 
 (0.0229) (0.0052 (0.0258) (1.9361) (0.5423) (2.1756) 
Pop 15.26 18.72 14.25 34.87 26.45 37.32 
 (60.28) (36.08) (65.74) (134.30) (54.30) (149.86) 
GDPpc  4.15 10.09 1.97 13.39 33.73 6.95 
 (4.66) (4.92) (1.76) (16.80) (20.68) (8.07) 
Industry 21.73 17.26 21.87 28.38 27.52 28.66 
 (10.40) (0.00) (10.54) (13.53) (11.42) (14.18) 
Urban rate 36.03 60.94 28.76 57.09 76.91 51.32 
 (23.77) (18.39) (19.97) (23.89) (15.12) (22.89) 
Density 164.32 261.52 136.36 312.16 475.78 264.49 
 (810.71) (685.99) (843.23) (1470.65) (1449.37) (1478.14) 
Density 3276.84 2695.49 3458.13 2700.42 2337.65 3014.42 
Urb.Areas (3427.02) (3161.42) (3175.92) (2292.86) (2337.93) (2372.55) 
Density 8901.46 4353.15 10531.83 5779.49 3962.14 6452.98 
Urb.Centers (18709.2) (3486.37) (22086.59) (3825.70) (2804.69) (3951.34) 

 

Note: The table presents country-level summary statistics at the beginning and end of sample period. 
The beginning is 1960 (exception: density and industry from 1965, density in urban areas and urban centers 
from 1975), the end is 2010 (exception: density in urban areas and urban centers from 2015). Standard deviation 
in parentheses. The variables are total CO2 emissions (in millions of tons), CO2 per capita (tons per capita), 
CO2 per GDP (kg per US$ of GDP), PM25 per capita (micrograms per cubic meter per 1000 people), 

                                                        
12 For density in urban areas, we aggregate all population living in areas identified as urban and dived by total 
area identified as urban. For density in centre areas we do the same but only considering center areas. 
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population in million inhabitants, real GDP in 1000 USD, the urban rate in percent, industry share as percentage 
of GDP, density as well as density in urban areas and urban centers in people per sq-km. 

 

 

Figures 1.a and 1.b highlight the between-country variation by providing maps of 
CO2 emission per capita and per GDP, respectively, in the year 2010. Countries in North 
America (i.e., the US and Canada), some countries in Europe, and Australia, all relatively rich 
and developed countries, have high levels of CO2 emissions per capita. By contrast, most 
countries in Sub-Saharan Africa (SSA), Latin America (LA) and Asia, relatively poorer and 
developing countries, have lower emissions per capita (Figure 1.a). But as shown in Figure 
1.b, the picture is somehow different when looking at emission per GDP. Underlining the 
insights from Table 1, most countries in Europe show relatively low levels while most 
countries in Asia show relatively high levels. These differences in emissions per GDP reflect 
important difference in fossil-fuel energy efficiency (i.e., CO2 emission per GDP) across 
countries. 

 

 

Figure 1.a and 1.b: Maps of CO2 Emissions per capita and per GDP, 2010 

 
 

 
 

   

 

Finally, Table A.2 in Appendix A shows correlations between our main variables, 
while Figure A.2 presents some scatter plots among them. There is a clear association 
between income per capita and emissions per capita. However, countries with higher income 
per capita tend to be more energy efficient; they show lower levels of emissions per GDP. 
The share of industry to GDP and the level of urbanization are also positively associated 
with emissions per capita. Regarding density, we see no clear association with emissions per 
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capita. However, we do see a clear and negative association between density in urban areas 
(and urban centers) and emissions per capita.  

 

Econometric results at the country level 

Table 2 shows our main econometric results at country level. As shown in column 1, a larger 
population, higher income per capita, and higher share of industry to GDP, are all associated 
with higher CO2 emissions, as expected. Moreover, the simple STIRPAT specification is 
able to explain up to 76% of the within variance in CO2 emissions. Our main focus is on the 
coefficient for population size. Results for population size yield a coefficient larger than one, 
meaning that when population increases the increase in emissions is more than proportional. 
In other words, emissions per capita increase. Moreover, because at country level an increase 
of population basically translates into an increase in population density, results in column 1 
suggest that emissions per capita increase with population density.13 In column 2 we replace 
total population for population density; the coefficient for density is virtually identical to the 
coefficient in for population in column 1. In column 3 we control for the urban rate, finding 
a positive and highly significant coefficient. Controlling for the urban rate also reduces the 
magnitude of the coefficient for density. Finally, in columns 4 and 5, we benefit from the 
GHSL data and introduce density in urban areas, considering all urban areas (column 4) or 
central areas only – i.e., those with more than 1500 people per sq. km (column 5). Using 
GHSL significantly reduces our sample size, but still leaves us with information for 160 
countries in column 4 and 144 in column 5. In both cases the coefficient is negative and 
significant, being highly significant in the case of density in central areas.  

In Table A.3 in Appendix A, we allow for more flexible specifications. First, we 
consider income per capita in linear and quadratic form to control for the EKC. Results yield 
the right signs for the EKC, but coefficients are non-significant.14 We then allow the 
coefficient for density to vary for developing vs. developed countries and find a coefficient 
larger than one for developing countries while smaller than one for developed countries. 
This suggests a differential density-emissions relationship between developed and developing 
countries: with emissions per capita going up with density in developing countries while 
going down in developed countries, in line with previous findings (see for instance Shi, 2003, 
or Marinez-Zarzoso et al., 2007). In the same spirit, we allow the coefficient for the urban 
rate and for density in urban areas to vary for developing vs. developed countries. The 
emissions-increasing role of urbanization seems driven mainly by developing countries, in 
line with Ponce de León and Marshall (2014) and Poumanyvong and Kaneko (2010). 
Similarly, the emissions-decreasing role of density in urban areas seems also driven by 
developing countries.15  

 

 

 

 

 

                                                        
13 Land area has hardly changed over time in the period of analysis, the exception being a handful of countries, 
namely Azerbaijan, Bulgaria, Bahrain, Bhutan, Germany, Ecuador, Ethiopia, Japan, and Vietnam.  
14 In a regression where we only consider income per capita in linear and quadratic form, without further 
controls, we do find a significant coefficient in line with the literature. 
15 Our results may also highlight different population dynamics between developing and developed countries: 
in the former population growth is much higher and a fast process of urbanization has been taking place. By 
contrast, in developed countries population growth is much lower and urban rates are already high; see e.g. 
Castells-Quintana (2017). 
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Table 2: Main results at country level 

  (1) (2)  (3)  (4) (5) 

Dependent variable: log(CO2)  log(CO2)  log(CO2)  log(CO2)  log(CO2)        
log(pop) 1.2378*** 

    
 

(0.1844) 
    

log(density) 
 

1.2671*** 1.0601*** 1.0964*** 1.2412***   
(0.1818) (0.1760) (0.2333) (0.2423) 

log(income) 0.7599*** 0.7627*** 0.7581*** 0.7756*** 0.7230***  
(0.0852) (0.0834) (0.0833) (0.1043) (0.1061) 

log(industry_share) 0.3449*** 0.3175*** 0.2758*** 0.2188* 0.1812  
(0.0882) (0.0838) (0.0782) (0.1149) (0.1263) 

log(urb) 
  

0.5304*** 0.7188*** 0.6341***    
(0.1467) (0.1887) (0.2311) 

log(density in urban areas) 
   

-0.2018* 
 

    
(0.1052) 

 

log(density in center areas) 
    

-0.2238***      
(0.0562) 

            

Year FE YES YES YES YES YES 

Country FE YES YES YES YES YES 

Observations 1140 1140 1114 340 307 
No. of countries 176 176 176 160 144 
R-Square (within) 0.764 0.737 0.749 0.694 0.679 

Note: The dependent variable is CO2 emissions in tons.  
Robust standard errors (clustered by country) in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 

 

 

In summary, our results at the country level suggest that while higher density at the 
national level is associated with higher emissions per capita, the opposite happens with 
density in urban areas; higher density in urban areas is associated with lower emissions (both 
total and per capita), especially when considering central areas. Our result on density in urban 
areas is novel and seems to suggest that increasing density in urban areas helps countervail 
the emissions-increasing effect of overall population density. The size of the coefficients 
suggests that a 1% increase in density in urban areas is associated with around a 0.22% 
decrease in emissions, a non-negligible magnitude.16 

 

3.3. Density and pollution at city level 

 

 Our results in Section 3.2 suggest that to better understand the evolution in emissions 
per capita, and in particular the role of density in urban areas and urban centers, we have to 
look at cities (something not explored in the global literature to date). In this section, we do 
so. 

 

A global panel of cities: data and stylized facts 

                                                        
16 We do not pretend to interpret our coefficients in causal terms. However, endogeneity concerns are 
mitigated as we control for time-invariant characteristics and a large list of time-variant factors.  
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To study the relationship between population density and pollution at the city level, we build 
a unique dataset including information for more than 1200 cities in more than 146 countries 
worldwide. An analysis of city size, density, structure and pollution has never been carried 
out in such a large global panel. Our dataset includes information on several variables at the 
city level from various sources. For pollution, population and physical extent of cities, we 
use data compiled by the European Commission’s GHSL Urban Centre Database (Florczyk 
et al, 2019). The GHSL data identifies the urban extent of countries based on the build-up 
area for more than 10,000 urban settlements around the world in 1975, 1990, 2000 and 2015, 
providing information on physical area and population for cities worldwide. The dataset also 
includes additional measures from other sources, such as urban greenness (Corbane et al. 
2018), CO2 emissions, and PM2.5 emissions and concentration (Crippa 2018). The pollution 
data are split up by sector into (power) energy, residential (energy for building and waste), 
industry (oil refineries and transformation industry, combustion for manufacturing, fuel 
exploitation, industrial processes, solvents and products use), transport and agriculture. 
Given our focus on population density and spatial structure, and the available data from 
other data sources, we focus on world cities which had more than 300,000 inhabitants in 
1990 and create a panel of these cities for the years 1975, 1990, 2000 and 2015.  

We combine the GHSL data with satellite data on night-time lights. Satellite data of 
night-time lights have become established as a proxy for local economic activity in recent 
years (see Henderson et al. 2012; Donaldson and Storeygard 2016). The ‘stable night light 
images’ are collected by the Defense Meteorological Satellite Program’s Operational 
Linescan System (DMSP-OLS), operated by the National Oceanic Administration Agency 
(NOAA). The values are published at the pixel level (30 arc seconds, corresponding to less 
than 1 square kilometer at the equator) as a yearly panel from 1992 to 2013. The light values 
are measured by a Digital Number (DN) ranging from 0 (dark) to 63 (fully illuminated). 
While this data has been extensively used in development and regional economics in recent 
years, Bluhm and Krause (2018) point out one serious weakness regarding their application 
to cities: the `stable light' data suffer from top-coding and fail to appropriately capture the 
brightness of the largest cities. With cities forming the focus of our analysis, we therefore use 
the top-coding corrected data by Bluhm and Krause (2018). Based on this data, we calculate, 
for each city, several variables: (i) Light per capita, obtained as the sum of lights divided by 
the population, as a proxy of local economic activity, (ii) inequality in light, calculated as a 
Gini coefficient of light, giving us an indication of the spatial distribution of population and 
economic activity within the city, and iii) a  Moran's (1950) I index, as a measure of spatial 
autocorrelation indicating how monocentric or polycentric the city is (with a low value 
indicating polycentricity, or fragmentation, and a high value indicating monocentricity, see 
Tsai, 2005).17 Table B.1 in Appendix B gives definitions and sources for the variables used in 
our city-level analysis. 

Table 3 presents main descriptive statistics for our main variables at the city level, for 
our sample of 1238 cities in our data set, for 1990, the beginning of the lights-based data, 
and 2015, the end of the sample. Some clear trends emerge. First, the average of emissions 
pc across our sample of cities has increased. But the variability in emissions per capita is 
much higher than in the cross-country setting, justifying a city-level analysis. CO2 emissions 
per capita are still considerably larger in cities in developed countries, but they show a 
decrease from 7.73m tons to 6.12m tones since 1990 – while their counterparts in developing 
countries show an increase from 1.3 to 2.3m tones. Second, the total population and 

                                                        
17 As night-time lights-based variable are available from 1992 to 2013, while the GHSL data is given for the 
years 1975, 1990, 2000 and 2015, we assign the first year of the lights data, 1992, to 1990 as well as the last year, 
2013, to 2015. This gives us a combined panel of three time periods, namely 1990, 2000, 2015, which allow us 
to capture within city variation over 25 years. 

Electronic copy available at: https://ssrn.com/abstract=3713325



   
 

   
 

population density in the average city of our sample have increased significantly.18 The 
average city in our sample had a population of over one million inhabitants in 1990, a value 
that increased to 1.62 million in 2015. Cities in developing countries are now, on average, 
larger than in developed countries, due to their strong growth in recent years. This process 
of city growth has been accompanied by an increase in population density, which was again 
particularly strong in developing countries: the average city in developing countries now 
houses 7160 people per square kilometre, nearly double the amount as in 1990, and more 
than twice as much as the average city in developed countries. Third, despite the increase in 
lights per capita, stark differences in luminosity still exist between cities around the world, 
which correlate strongly with income levels at the country level. The mean of light per capita 
is 40.59 DN, but it goes from nearly zero in some smaller African cities, with hardly any 
observed light, to 664 DN in Manama, Bahrain. Within cities, inequality in light has fallen in 
the developing world, potentially reflecting more electrification (Bluhm and Krause 2018). 
Finally, looking at the spatial structure of cities (using our lights-based measures), we find 
interesting differences across cities in developed vs. developing countries: on average, cities 
in developed countries have a higher Moran´s I, suggesting more monocentric structures and 
less fragmentation. Moreover, larger cities are more monocentric in general, making cities 
below 1m inhabitants in developing countries the least monocentric, probably reflecting 
spatial fragmentation on those cities. Figure B.1 in Appendix B complements these statistics 
by illustrating the spatial structure of four different cities. 

 

Table 3: Summary Statistics over 1238 cities  
 

 1990 2015 

 World Dev'd Dev'ing World Dev'd Dev'ing 

CO2 pc 2.7051 7.7338 1.3111 3.1431 6.1232 2.3170 
 (5.8636) (9.7407) (2.9544) (6.0044) (9.6455) (4.1459 
PM2.5 pc 0.0025 0.0029 0.0024 0.0021 0.0015 0.0022 
 (0.0053) (0.0032) (0.0057) (0.0032) (0.0037) (0.0030) 
Pop 1.0988 1.3007 1.0428 1.6179 1.5501 1.6367 
 (2.1035) (2.4675) (1.9887) (3.2020) (2.9526) (3.2690) 
Density 4373.21 2862.66 4791.94 6284.77 3129.59 7159.40 
 (2354.19) (1458.21) (2384.03) (3514.40) (1432.24) (3418.03) 
Lights pc 37.17 101.74 19.26 40.59 103.13 23.24 
 (74.87) (123.54) (38.20) (54.96) (69.88) (33.48) 
Gini in  0.3327 0.2740 0.3491 0.2663 0.2937 0.2587 
Lights (0.1142) (0.0975) (0.1131) (0.0956) (0.0857) (0.0969) 
Moran's I 0.7645 0.8160 0.7501 0.7514 0.8258 0.7307 
 (0.1035) (0.0756) (0.1057) (0.1186) (0.0670) (0.1215) 
Moran’s I  0.8582 0.8849 0.8488 0.8396 0.8812 0.8280 
if pop >1m (0.0605) (0.0405) (0.0635) (0.0716) (0.0406) (0.0741) 
Moran’s I 0.7343 0.7875 0.7206 0.7044 0.7962 0.6789 
if pop <1m (0.0962) (0.0680) (0.0976) (0.1117) (0.0591) (0.1094) 

 
Note: The summary statistics are CO2 per capita (non-short cycle CO2 emissions from all sectors, 

measured in tones), PM2.5 emissions per capita, population in million inhabitants, density in people per sq. km, 
lights per capita (in Digital Number units), the Gini coefficient of spatial inequality in lights, Moran’s I as a 
measure of monocentricity vs fragmentation. Standard deviation in parentheses.  

 

                                                        
18 According to our data, while density in urban areas (at the country level) has decreased, density in cities has 
increased. This is explained by two reasons. First, the fact that our country-level data include all urban areas, 
for example lower-density towns and smaller cities, while for our city-level application, we focus on cities larger 
than 300.000 inhabitants. Second, the fact that, nationally, the share of population living in low density urban 
areas has increased (see OECD 2018). 
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Figure 2 provides a geographical illustration. We map the cross-country variability in 
CO2 emission per capita (as in Figure 1) but focus on cities with more than 1 million 
inhabitants, classified by their levels of emissions per capita in 2015. As it can be seen, most 
polluting cities (in per capita terms) are located in rich regions (like North America, Europe 
and Japan) but also in some countries in the Middle East and other regions in Asia, especially 
in China. In fact, 6 of the 10 most polluting cities in per capita terms are Chinese. 

 

 

Figure 2: Map of CO2 Emissions per capita, countries and cities of more than 1M 

 
   

 

 

Table B.2 in Appendix B shows correlations between our main variables at the city 
level, while Figures B.2 present some scatter plots among them. We see a clear association 
between lights per capita and emissions per capita; richer cities pollute more. We also see 
that, on average, denser cities have lower CO2 emissions per capita. However, denser cities 
are, on average, poorer. Regarding the spatial structure of cities, we see a clear positive 
association between monocentricity and emissions per capita.19  

Finally, Figure B.3 in Appendix B shows the evolution over time of pollutants 
emissions in the average city by sector, while Table B.3 shows correlations among sectors. 
All sectors show an increasing trend in pollutants from 1975 to 2015. The industrial sector 
is typically responsible for most emissions, although in 2015 the energy sector has become 
the leading emitter of CO2. Transports contribute a small but growing share of CO2 
emissions. Looking at correlations, we see high correlations across the different sectors (with 
agriculture being the exception); cities that emit a lot of CO2 seem to do so across all sectors.  

 

                                                        
19 Interestingly, we also see that richer cities (i.e., with higher values of lights per capita) tend to be more spatially 
concentrated (i.e., more monocentric) and more spatially unequal. This is in line with insights from the urban 
economics literature suggesting i) that agglomeration economies lead to high concentration of population and 
economic activity in core districts of the city (see for instance Ciccone and Hall, 1996, Rosenthal and Strange, 
2004) and ii) that larger cities tend to be more unequal (see Castells-Quintana et. al., 2020). 
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Econometric analysis at the city level 

As in Section 3.2, we now econometrically explore the connection between population 
density and pollution, but this time at the city level, relying on our global panel of 1238 cities. 
We follow a similar STIRPAT specification to the one adopted in our cross-country analysis, 
where air pollution per capita is explained by measures of population, affluence and 
technology. For pollution, we use alternatively data on CO2 or PM2.5 emissions, as well data 
on PM2.5 concentration. For population, we consider both total population and population 
density. The distinction is now relevant, as for cities, contrary to countries, we do have 
variation over time not only in population but also on physical size. For affluence, we use 
lights per capita as a proxy for income. For technology, unfortunately, we do not have 
information on the share of industry at the city level for our global sample of 1244 cities. 
However, we make sure that our results are robust to controlling for the industry share at 
the country level (at the expense of losing observations) as well as introducing country or 
city fixed effects. 

 Table 4 present results of estimates using CO2 emissions as the dependent variable. 
In column 1 to 3 we consider total population, while in columns 4 to 6 we consider 
population density. In columns 1 and 4 we include time fixed effects, to control for global 
shocks, and country fixed effects, to control for country-specific time-invariant 
characteristics. In this way, estimates in columns 1, 2, 4 and 5 rely on variation across cities 
within countries. In columns 3 and 6 we include city fixed effects, so in this case estimates 
rely on within-city variation over time. In columns 1 and 2 we find that larger cities in a given 
country tend to display significantly higher levels of CO2 emissions per capita. However, in 
column 3, we find that as cities grow in population, they display less emissions per capita. In 
columns 4, 5 and 6, we find that higher density is associated with significantly lower 
emissions. Additionally, and as expected, we find that higher income and share of industry 
are significantly associated with more emissions per capita.  

  

 

Table 4: Main results at city level 

  (1) (2) (3) (4) (5)  (6)  

Dep. variable: logCO2pc logCO2pc logCO2pc logCO2pc logCO2pc logCO2pc  
 

    
 

log(pop) 0.1509*** 0.1835*** -0.3409*** 
  

  
(0.0301) (0.0232) (0.0986) 

  
 

log(density)  
  

-0.5271*** -0.4759*** -0.2237***  
 

  
(0.0732) (0.0428) (0.0517) 

log(lightspc) 0.3179*** 0.3294*** 0.1338*** 0.2285*** 0.2385*** 0.1351***  
(0.0493) (0.0507) (0.0429) (0.0354) (0.0564) (0.0436) 

log(industry)  1.0553*** 1.1179*** 
 

1.0767*** 1.0395***  
 (0.3390) (0.1280) 

 
(0.3186) (0.1259) 

              

Year FE YES YES YES YES YES YES 

Country FE YES YES - YES YES - 

City FE NO NO YES NO NO YES 

Observations 2588 1406 1406 2588 1406 1406 
No. of cities 943 788 788 943 788 788 
No. countries 129 106 106 129 106 106 
R-Square 0.698 0.701 0.282 0.712 0.683 0.288 

Note: Robust standard errors (clustered by city) in parentheses.  
*** p<0.01, ** p<0.05, * p<0.1 
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Results in Table 4 suggest that denser cities, on a global average, tend to have lower 
emissions per capita. This result is in line with previous evidence for smaller samples (Glaeser 
and Kahn 2010; Zheng et al. 2011; Hilber and Palmer 2014). Our results suggest an elasticity 
between 0.22 and 0.52: a 1% increase in population density reduces pollution per capita 
between 0.22 and 0.52%.  

 

Robustness checks and endogeneity concerns 

As shown in Table 4, our results are robust to controlling for country and city time-invariant 
characteristics as well as for several time-variant ones. The inclusion of city fixed effects also 
helps to alleviate measurement errors inherent to the construction of global data sets. In 
Tables B.4, B.5 and B.6 in Appendix B, we further test the robustness of our results at city 
level. In Table B.4, we allow for a more flexible specification, as we did in our analysis at 
country level. In particular, we include our proxy for income – lights per capita - in linear 
and quadratic terms to control for potential non-linearities, as suggested by the EKC. We 
find a highly significant non-linear association yielding an inverted-U. This inverted-U is 
robust across different specifications, and it suggests that as cities become richer emissions 
per capita first increase and then decline. To the best of our knowledge, this is the first time 
that the EKC is reported using a global panel of cities. In any case, even controlling for the 
EKC, our coefficient for density remains significant.  

In Table B.5, we present results using PM2.5 emissions as the dependent variable. 
Results are very similar to those in Table 4 with CO2 emissions, and reinforce the idea that 
emission per capita go down with population density. Results with PM2.5 also reinforce the 
EKC at the city level. 20   

Finally, in Table B.6, we further address endogeneity concerns. Estimates in Table 4 
may be biased due to reverse causality (i.e., it could be that more pollution leads to less 
density), or due to relevant omitted variables. To further check for endogeneity, we perform 
alternative estimation techniques. In column 1 of Table B.6, we present First Difference (FD) 
estimates of equation (8). We find a negative and significant coefficient for density, very 
similar in magnitude to the one estimated with fixed effects. In static models first differencing 
is almost equivalent to introducing fixed effect (see Wooldridge 2010). However, a first-
differences specification allows us to use lags of density to predict first-differences and 
perform Instrumental Variables (FD-IV) estimations, in the vein of Arellano-Bond (1991) - 
column 2 of Table B.6.21 FD-IV estimates show that lagged levels of density are significantly 
relevant to predict first-differences, and yield a negative and significant coefficient for density 
in our regression for emissions per capita. In column 3 we take a different approach and use 
a simple long-run difference, regressing the change in emissions per capita between 1990 and 
2015 on the same 25-years change in right-hand-side variables. In column 4, we run a ‘deep’ 
cross-section regressing emission per capita measured in 2015 on right-hand-side variables 
measured in 1990. These are alternative strategies to further reduce problems of reverse 
causality and consider a long-run association (25 years) between density and emissions per 
capita.22 Results again yield a negative and highly significant coefficient for density. Finally, 

                                                        
20 Our results for density, either using CO2 emissions or PM2.5 as dependent variable, are also robust to 
excluding cities in large countries, like China or the USA or, splitting cities by city size, for instance between 
those above and below one million inhabitants. The results are available upon request. 

21 Gonzalez-Navarro and Turner (2018) and Castells-Quintana (2018) also work with panel data on city-level 
population across the world, and use a similar identification strategy building on Olley and Pakes (1991) and  
Arellano and Bond (1991).  
22 Panel FE, or panel FD, estimates consider variation within countries over time, so results relate to the 
association between changes in density and changes in emissions per capita. Our cross section setting considers 
variation between countries, so results relate to the association between levels in density in the past (1975) and 
levels in emissions per capita today (2015).  
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in columns 5 and 6, we rely on IV estimates using population data circa 1870, constructed 
with historical data from Mitchell (2013), but at the expense of losing observations.23 Results 
show that historical data is relevant to predict population density in the last decades (either 
in 1990 or 2015). Our IV coefficients for density remain negative and significant and in line 
with our panel results.24 

 

The role of city structure 

So far our results suggest that denser cities pollute less, in per capita terms. But cities do not 
have the same density in all its areas. In particular, while some cities show a highly dense core 
surrounded by less dense areas, other cities show a more polycentric structure with several 
areas of the city displaying similarly high-density levels. These differences in density within 
the city reflect different spatial structures that may also play a role in emissions per capita. In 
this sub-section, we investigate the role of the spatial structure of cities on emissions per 
capita using our global panel of cities and relying on night lights-based measures of city 
structure.  

In Appendix C, we provide a simple urban economics model (based on Borck and 
Tabuchi, 2018) and add an index of polycentricity to capture the micro-foundations of the 
role of spatial structure in the density-emissions relationship. According to our simple model, 
in large cities, and everything else equal, a more polycentric structure should lead to lower 
emissions per capita. In Table 5 we test this prediction using our city-level data, using CO2 
emissions as our dependent variable and using Moran’s I as our measure of spatial structure. 
In columns 1 and 3 we look at population size, while in columns 2 and 4 we look at 
population density. According to results in columns 1 and 2, there is a negative and significant 
association between concentration and emissions; more monocentric cities display lower 
emissions per capita. However, according to columns 3 and 4, the role of the spatial structure 
of cities seems to depend on city size (but not on overall density of the city). For a relatively 
small city size, monocentricity is associated with less emissions, but as cities grow 
monocentricity is associated with more emissions. Figure C.1 in Appendix C shows the 
marginal effect of the spatial structure of the city depending on city size.25  

Results in Table 5 suggest that, for relatively small cities, monocentricity is desirable 
to reduce pollution, but that for larger cities, it is polycentricity what reduces emissions per 
capita. This result is in line with insights in the literature and with our simple theoretical 
model. One key factor explaining this role of the spatial structure depending on city size is 
what happens with transport within the city. In relatively small cities, monocentricity means 
a compact city, which reduces the need and length of commutes. By contrast, in larger cities, 
monocentricity may imply more and longer commutes. In this case, a more polycentric 
structure may reduce the need to commute and the length of commutes. In column 5 of 
Table 5, we test this idea by looking a CO2 emissions from transport. As expected, we find 

                                                        
23 Recent papers have used historical data to instrument for current population (see for instance Duranton, 
2015; Castells-Quintana, 2018; and Castells-Quintana et al, 2020). We construct agglomeration size circa 1870 
using total population of major cities around in 1870, or earliest year for which there is data available before 
1900, and combining cities that are today part of the same urban agglomeration.  
24 To test for the exclusion restriction, we estimate residuals from the first and second stage and then run 
residuals of the second stage on those from the first stage. Results are not significant, indicating that the two 
residuals are not correlated, and providing evidence to support the exclusion restriction. 
25 According to estimates, the desirability of polycentric structure becomes evident for cities (i.e., metropolitan 
areas) larger than 5 million inhabitants. This may seem as a large number, but it is given by our global sample 
including cities from 300 thousand inhabitants to cities or more than 30 million. The actual population size 
from which polycentricity becomes desirable may of course depend on many city characteristics. 
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that monocentricity is associated with less emissions in relatively small cities, but with more 
emissions in larger cities. 

 

 

Table 5: Role of spatial structure 

  (1) (3) (2) (4)  (5)  

Dependent variable: logCO2pc logCO2pc logCO2pc logCO2pc logCO2transport_pc       
log(pop) -0.5479*** -1.4775*** 

  
-1.5688***  

(0.0966) (0.2875) 
  

(0.1485) 
log(density) 

  
-0.6111*** -0.4157 

 
   

(0.0961) (0.3568) 
 

Moran´s I -2.2502*** -18.1739*** -1.8964*** 0.6078 -15.3478***  
(0.3139) (4.4946) (0.3123) (3.7921) (2.4525) 

log(pop)*Moran´s I 
 

1.1951*** 
  

1.0053***   
(0.3444) 

  
(0.1861) 

log(density)*Moran´s 
I 

   
-0.2611 

 

    
(0.4049) 

 

            

Year FE YES YES YES YES YES 

City FE YES YES YES YES YES 

Controls YES YES YES YES YES 

Observations 2588 2588 2588 2588 3722 
No. of cities 943 943 943 943 1242 
No. of countries 129 129 129 129 146 
R-Square 0.209 0.216 0.25 0.251 0.479 

Note: Robust standard errors (clustered by city) in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

 

4. Discussion and Conclusions 

 

In this paper, we have taken a global view at air pollution looking at countries and 
cities worldwide. In doing so, we have revisited the relationship between population density 
and different types of air pollution. We have done so using i) a large panel of countries with 
data from 1960 to 2010, and ii) a large sample of 1238 (big) cities in 146 countries around 
the world with data for the last two decades. 

We have contributed to the literature in several ways. First, we have provided a global 
analysis of pollution looking at more than 182 countries and more than 1200 cities (when 
previous papers have at most looked at 75 cities). Second, we bridge the gap between a 
country- and city-level analysis by introducing novel measures for density in urban areas at 
the country level. By considering density in urban areas, we can disentangle the effect of 
overall population density and more people living in urban areas (i.e., the urban rate), as 
traditionally done in the country-level literature, from the effect of population density in 
urban areas. In addition, we study the role of city characteristics, such as population size, 
density and urban structure, as determining factors in the evolution of emissions per capita.  

Our unique data set has revealed large differences in pollution not only across 
countries, but more importantly across cities worldwide. At country level, we have found 
that while higher total population density and urbanisation are associated with higher 
emissions per capita, the opposite happens when we look at density in urban areas; higher 
density in urban areas is associated with lower emissions per capita. In line with theoretical 
insights, this suggests that while urban life, especially at early stages of development, may be 
more polluting, higher density in urban areas comes with lower emissions per capita. This 
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result is supported in our analysis at the city level: denser cities show lower emissions per 
capita. This negative relationship between city density and emissions per capita is robust to 
several controls and different estimation techniques and identification strategies. Using our 
global sample of cities, we have also found evidence of the Environmental Kuznets Curve 
(EKC), suggesting that emissions per capita go up with income levels at early stages of 
development, but then decline as development proceeds. This is the first time that the EKC 
curve is reported in a global sample of cities. Finally, we have found that the spatial structure 
of cities also plays an important role; on average, a relatively small-monocentric (compact) 
city pollutes less compared to relatively small-dispersed one. But large-polycentric cities 
pollute less compared to large-monocentric ones. This differentiated result by city size seems 
to be related to transport emissions.    

In terms of policy implications, our results suggest that policy-makers concerned with 
pollution should pay attention not only at population dynamics but also at the evolution of 
the spatial distribution of population, both at the country and city level. In particular, and 
based on our results, fostering denser urban areas may lead to lower emissions per capita. 
Similarly, as cities grow, a more spatially decentralized (i.e., polycentric) structure should be 
encouraged.  

Finally, our results call for further research. While we have taken a global view, the 
evolution of emissions per capita is likely to depend on several specificities of countries and 
cities that deserve careful analysis on a case to case basis. The role of different types of 
infrastructure, institutional settings, production and consumption patterns, as well as social 
preferences, not studied in this paper, deserves a more detailed analysis. In sum, a better 
understanding of emissions patterns will prove to be of upmost value to guide needed 
policies aimed at reducing air pollution and its dangerous consequences.  
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Appendix A: Data and additional results at country level 

 

Table A.1: Definitions and sources, variables at country level 

Variable Time Span Source 

Total CO2 Emissions 1960-2010 World Bank – World Development Indicators 
based on  data from the Carbon Dioxide 
Information Analysis Center, Environmental 
Sciences Division, Oak Ridge National Laboratory, 
Tennessee, U.S. 

CO2 Emissions per capita 1960-2010 World Bank – World Development Indicators 

CO2 Emissions per GDP 1960-2010 World Bank – World Development Indicators 

Total Particulate Matter (2.5) 1960-2010 World Bank – World Development Indicators  

Total Population 1960-2010 World Bank – World Development Indicators 

Income per capita 1960-2010 Real GDP per capita from Penn World Tables 7.1  

Industry Share 1965-2010 World Bank – World Development Indicators 

Urban Rate 1960-2010 World Bank – World Development Indicators 

Density 1965-2010 World Bank – World Development Indicators 

Density in Urban Areas 1975, 1990, 
2000, 2015 

Constructed using data from Global Human 
Settlement Layers, see Pesaresi and Freire (2016) 
for details 

Density in Urban Centers 1975, 1990, 
2000, 2015 

Constructed using data from Global Human 
Settlement Layers,  see Pesaresi and Freire (2016) 
for details 

 

 

 

 

 

 

Table A.2: Correlations, main variables at country level 

 CO2 pc GDPpc Industry Urb Density D.Urb.Areas 

GDPpc 0.755      

Industry 0.379 0.206     

Urb 0.492 0.639 0.332    

Density 0.010 0.177 -0.059 0.231   

Density in Urb Areas -0.065 -0.151 -0.020 -0.030 0.508  

Density in Urb Center -0.100 -0.123 0.000 -0.135 0.126 0.489 

Notes: The correlations are computed across all available countries and time periods.  
For more information on the variables, see Table B.1.  
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Figure A.1: Density in urban areas, 2015 
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Figure A.2: Scatter Plots between Country-Level Variables 

 

(A) Log GDP pc and log CO2 emissions pc  (B) Log GDP pc and log CO2 emissions per GDP 

    

 

(C) Log industry share and log CO2 emissions pc (D) Log population density and log CO2 emissions pc 

    

 

(E) Log urban rate and log CO2 emissions pc 

 

 

(F) Log density in urb areas and log CO2 pc  (G) Log density in urb centers and log CO2 pc 
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Note: All plots use all available data for all time periods and countries. 

 

 

Table A.3: Robustness checks at country level 

  (1)  (2) (3) (4) 

Dependent variable: log(CO2)  log(CO2)  log(CO2)  log(CO2)       
log(pop) 1.2320*** 

   
 

(0.2062) 
   

log(density)*developing 
 

1.3232*** 1.0909*** 1.1690***   
(0.1970) (0.2114) (0.3033) 

log(density) *developed 
 

0.7103*** 0.7944*** 1.3005*   
(0.2022) (0.2178) (0.6788) 

log(income) 0.8096 0.7148 0.5284 1.0313  
(0.5049) (0.4460) (0.4230) (0.8812) 

log(income)2 -0.0031 0.0045 0.015 -0.0183  
(0.0309) (0.0276) (0.0257) (0.0511) 

log(industry_share) 0.3441*** 0.2903*** 0.2665*** 0.1726  
(0.0875) (0.0841) (0.0807) (0.1341) 

log(urb)*developing 
  

0.5080*** 0.6168***    
(0.1467) (0.2260) 

log(urb)*developed 
  

-0.2505 -0.2923    
(0.4867) (0.9235) 

log(density in center)*dev’ing 
   

-0.2109***     
(0.0559) 

log(density in center) *dev’ed 
   

-0.5426     
(0.8937) 

          

Year FE YES YES YES YES 

Country FE YES YES YES YES 

Controls YES YES YES YES 

Observations 1140 1114 1114 304 
No. of countries 176 176 176 144 
R-Square (within) 0.87 0.741 0.751 0.681 

Note: The dependent variable is CO2 emissions in tons. Robust standard errors (clustered 
by country) in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 
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Appendix B: Data and additional results at city level 

 

 

Table B.1: Definitions and Sources for the variables used in our city-level analysis 

 

Variable Time Span Source 

CO2 per capita 1975, 1990, 
2000, 2015 

Constructed using the European Commission’s 
GHSL Urban Centre Database, which is itself 
based on the European Commission’s in-house 
Emissions Database for Global Atmospheric 
Research (EDGAR v4.3.2) 

PM 2.5 per capita 1975, 1990, 
2000, 2015 

Constructed using the European Commission’s 
GHSL Urban Centre Database, which is itself 
based on based the Global Burden of Disease 
(GBD) 2017 data 

Population 1975, 1990, 
2000, 2015 

European Commission’s GHSL Urban Centre 
Database (see Florczyk et al, 2019 for details) 

Density  1975, 1990, 
2000, 2015 

Constructed using the European Commission’s 
GHSL Urban Centre Database 

Lights per capita 1992-2013 Constructed using Satellite Data of Night-time 
lights, top-coding-corrected (see Bluhm and 
Krause, 2018) 

Spatial Gini coefficient in 
light  

1992-2013 Constructed using Satellite Data of Night-time 
lights, top-coding-corrected  

Moran’s I: spatial 
autocorrelation 

1992-2013 Constructed using Satellite Data of Night-time 
lights, top-coding-corrected  

 

 

 

Table B.2: Correlation of Variables, 1238 Cities, all available years 

 

 CO2 pc Population Density Light pc Light Gini 

Population 0.011     

Density -0.156 0.181    

Light pc 0.300 0.048 -0.352   

Light Gini -0.054 0.251 -0.088 0.092  

Moran’s I 0.197 0.400 -0.362 0.296 0.449 

Note: CO2_pc are the per capita non-short cycle CO2 emissions for all sectors, density denotes population density, Light 
p.c. is the light per capita measured in DN, Gini is the Gini coefficient of inequality in lights, Moran is Moran’s I Spatial 
Autocorrelation Coefficient. 
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Figures B.1: Spatial Structure of Four Different Cities 

 

 
 

 
 
 

 
 

Note: The four pictures present maps of four different cities (Paris, Delhi, Medellín and 
Niamey), illustrating the distribution of night-time lights across the pixels of the built-up 
area. Night-time lights in the year 2013 are depicted with respect to each city’s maximum 
luminosity, with brighter colors (yellow, orange, red) denoting higher values and darker 
colors (purple, black) lower values. The urban extent of the city based on the GHSL data of 
2015 forms the backdrop.  The strongest monocentricity of these four cities is exhibited by 
Paris (Moran’s I of 0.9502), followed by Delhi (0.9352) while both Medellín (Moran’s I of 
0.7686) and Niamey (Moran’s I of 0.6617) are rather fragmented. 
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Figure B.2: Scatter plots across 1328 cities for the year 2015 

 

(A) Log lights pc and log CO2 emissions pc  (B) Log population density and log CO2 emissions pc 

    
 

(C) Log Moran’ I and log CO2 emissions pc 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Electronic copy available at: https://ssrn.com/abstract=3713325



   
 

   
 

 

 

 

Figure B.3: Time Trends of Different Emission Types 

    

 
 

 

Table B.3: Correlations by industry 
 

 Energy Residential Industry Transport 

Residential 0.492    

Industry 0.478 0.589   

Transport 0.489 0.795 0.652  

Agriculture 0.154 0.101 0.174 0.263 

Note: correlation of Non-Short Cycle CO2 Emissions by Sector, 1238 Cities, all years. 
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Table B.4: the EKC at city level  

  (1) (2) (3) (4)  (5)  

Dependent variable: logCO2pc logCO2pc logCO2pc logCO2pc logCO2pc       
log(pop) 0.1488*** -0.5626*** 

  
0.0117  

(0.0289) (0.0972) 
  

(0.1586) 
log(density) 

  
-0.5133*** -0.6544*** -0.6600***    

(0.0719) (0.1025) (0.1555) 
log(lightspc) 0.7004*** 0.4862*** 0.5285*** 0.4081*** 0.4069***  

(0.1182) (0.1682) (0.0813) (0.1557) (0.1561) 
log(lightspc)2 -0.0617*** -0.0551** -0.0478*** -0.0438** -0.0435**  

(0.0184) (0.0234) (0.0120) (0.0216) (0.0217) 
            

Year FE YES YES YES YES YES 

Country FE YES - YES - - 

City FE NO YES NO YES YES 

Observations 2588 2588 2588 2588 2588 
No. of cities 943 943 943 943 943 
No. of countries 129 129 129 129 129 
R-Square 0.701 0.174 0.822 0.431 0.433 

Note: Robust standard errors (clustered by city) in parentheses.  
 *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

Table B.5: Results at city level using PM2.5 emissions 

  (1) (2) (3) (4)  (5)  

Dependent 
variable: 

logPM2.5pc logPM2.5pc logPM2.5pc logPM2.5pc logPM2.5pc 

      
log(pop) 0.2283*** -0.2789** 

  
0.2163  

(0.0285) (0.1186) 
  

(0.1637) 
log(density) 

  
-0.3556*** -0.4288*** -0.5491***    
(0.0526) (0.0788) (0.1469) 

log(lightspc) 0.3517*** 0.3204*** 0.3304*** 0.2972*** 0.2755***  
(0.0699) (0.0578) (0.0624) (0.0526) (0.0503) 

log(lightspc)2 -0.0293** -0.0554*** -0.0264*** -0.0538*** -0.0486***  
(0.0121) (0.0096) (0.0096) (0.0086) (0.0087) 

            

Year FE YES YES YES YES YES 

Country FE YES - YES - - 

City FE NO YES NO YES YES 

Observations 2694 2694 2694 2694 2694 
No. of cities 968 968 968 968 968 
No. of countries 142 142 142 142 142 
R-Square 0.67 0.188 0.656 0.235 0.239 

Note: Robust standard errors (clustered by city) in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table B.6: further robustness checks 

  (1) FD (2) FD-IV (3) Deep Diff (4) Deep CS. (5) IV (6) IV  

Dep. variable: logCO2pc logCO2pc logCO2pc logCO2pc logCO2pc logCO2pc  
 

    
 

log(density) -0.5429*** -1.4800*** -0.2775*** -0.3342*** -0.7399* -0.7400**  
(0.0659) (0.2655) (0.0807) (0.0539)  (0.4468) (0.4262) 

log(lightspc) 0.1952*** 0.1122*** 0.0365 0.2011***  -0.0002  
(0.0363) (0.0442) (0.0579) (0.0679)  (0.0715) 

              

Year FE YES YES - - - - 

Country FE - - YES YES YES YES 

Observations 1633 1632 814 905 328 328 
No. of cities 831 788 814 905 328 328 
No. countries 119 119 108 119 86 86 
F-test of excluded 
instruments 

 54.01***   6.87** 11.15*** 

Note: Columns 1 and 2 are estimated by first-differences using our panel data. In column 3, all variables 
are calculated as changes between 1990 and 2015. In columns 4 to 6, logCO2pc is measured in 2015 and 
right-hand-side variables are measured in 1990, with log(density) instrumented with historical population 
data. Robust standard errors (clustered by city in columns 1 and 2 and by country in columns 3 and 4) in 
parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Appendix C: The role of the structure of cities:  

 

A theoretical framework 

We briefly characterize the conceptual framework behind our empirical analysis at the city 
level. The model follows the consensus of the literature and is in particular based on the 
insights of Borck and Tabuchi (2018).  

We consider an economy with R number of cities. In each city, population size, P, is 
endogenous, while total population N is exogenous. Each city is characterized by a Central 
Business District (CBD) and an endogenous border denoted x. All individuals commute to 
the CBD and have identical preferences:26 

  𝑈 = 𝑞𝛼ℎ1−𝛼𝐼−𝜇 ,          (C1) 

where q is the numéraire, h the housing consumption and I the negative externality coming 
from pollution. Consumers maximize their utility under the following budget constraint,       

𝑤 = 𝑞 + rℎ + 𝑡𝑥,                     (C2) 

where r is the housing price, t is the commuting cost per unit of distance, and x is the distance 
to the border. After maximization, the housing consumption is given by  

ℎ =
𝛼(𝑤−𝑡𝑥)

𝑟
,                                                                             (C3) 

and considering that workers are mobile across and within locations, the housing rent is now 
equal to  

     𝑟 = (𝑤 − 𝑡𝑥)
1

𝛼𝐼−
𝛽

𝛼𝑣−
1

𝛼,                                                             (C4) 

with 𝑣 = 𝛼−𝛼(1 − 𝛼)(1−𝛼)�̅� . The bid rent depends on the wage rate, the commuting time 
at the border and pollution. Notice that at the spatial equilibrium the rent will be equal to the 

opportunity cost of land 𝑟𝐴. 

The city border 𝑥 solves the total population constraint given by  

𝑃 = ∫
1

ℎ

�̅�

0
𝑑𝑥,                                                                             (C5) 

where 
1

ℎ
 is the population density at 𝑥, such that 𝑃 is the total population that fits into a 

border 𝑥.  

We assume that production in each city is characterized by external economies of 

scale capturing agglomeration effects, with 𝛾 < 𝛼:  

  𝑌 = 𝑃1+𝛾, and the individual wage rate 𝑤 = 𝑃𝛾.                           

Solving the city border equation (5) by using the housing rent (3) and (4) implies that 
the equilibrium city border is given by 

     �̅� =
𝑃𝛾[1−𝑟𝐴

𝛼(𝑟𝐴+𝑡𝑛)−𝛼]

𝑡
                                                              (C6) 

To fully solve the equilibrium, we replace optimal housing demand (3) and optimal 
rent (4) into the utility function (1) and we obtain the indirect utility in equilibrium, given by 

  𝑉 = 𝑃𝛾(𝑟 + 𝑡𝑃)−𝛼𝐼−𝜇                                                      (C7) 

We can observe the traditional market trade-off: as population P increases, utility 
increases due to agglomeration forces while it decreases because of longer commuting 
distances t and competing for land r.  

                                                        
26 A Cobb-Douglas function is quite common, without being determinant. Denant-Boemont et al. (2018) 
have chosen a quasi-linear utility specification that does not affect qualitatively their results. 
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This simple model allows to identify the equilibrium population at the city level, using 

the migration condition that relies on the indirect utility differential 𝑉(𝑃𝑖) − 𝑉(𝑃𝑗). 

Setting 𝑉′(𝑃𝑖) = 0, and considering first pollution has a global phenomenon that affect utility 
but does not affect location choices,27 the equilibrium population level that solves the 
differential is equal to  

  𝑃 =
𝛾𝑟

(𝛼−𝛾)t
                                                                                  (C8)                     

                                                      

As underlined by Henderson (1974) and Borck and Tabuchi (2018), the equilibrium 
population is not necessarily equal to the optimal city size, which is derived from the 
maximization of indirect utility with respect to population. To obtain the optimal value of P 

we replace 𝐼 = (𝑃𝜃𝐴𝜑𝑇) in the indirect utility we obtain: 

  𝑉(𝑃) = 𝑇−𝜇(𝐴)−𝜑𝜇𝑃𝛾−𝜃𝜇(𝑟𝐴 + 𝑡𝑃)−𝛼,             

which once maximized with respect to P gives the optimal population: 

   𝑃∗ =
(𝛾+(1−θ)µ)𝑟𝐴

(𝛼−𝛾−(1−θ)μ)t
                               (C9)    

which depends on θ and µ, namely the pollution elasticity and its disutility, α -the housing 
share, γ -the economies of scale, and t -the commuting costs. Population P is strictly defined 
within a border x so that it can be interpreted as city size but also population density.  

To analyze under which conditions population is optimal, basically comparing 𝑃 

and 𝑃∗, values for parameters α, γ and µ must be set. Following the literature, we can set 
α=0.24 (according to Davis and Ortalo-Magné, 2011); γ=0.05 (according to Combes and 
Gobillon, 2015) and µ=0.022 (according to Borck and Tabuchi, 2018). In this case, the 
equilibrium population density is sub-optimal for any value of θ>1 and positive values of 
rent and commuting costs. In other words, if the pollution elasticity is higher than one, it 
means that city size (or population density) is not high enough to lead to a decrease in 
emissions per capita.  

So far, we have considered cities to be symmetric. But what if locations are 
considered to differ from each other? To answer this, we go beyond the existing literature 
and assume that locations differ from each other, by their amenities or by their structure. In 
particular, we assume that cities are characterized by the following indirect utility: 

  𝑉(𝑃𝑖) = 𝐵𝑖𝑃𝑖
𝛾(𝑟𝐴 + 𝑡𝑃𝑖)

−𝛼𝐼𝑖
−𝜇

                                                          (C10) 

where 𝐵 = 𝑍𝜌 is the interaction between a level of amenities (infrastructures, geographic 
position…) and a degree of polycentricity. The main idea here is to assume that a polycentric 
city offers a better access to amenities and more efficient infrastructures (Fujita et al. 2001, 
Dieleman, 2002, Li et al, 2018). 

As above, pollution is given by 𝐼 = (𝑃𝜃𝐴𝜑𝑇) and, considering free migration, we 
obtain the equilibrium value of B, 

  𝐵𝑖 = (
𝑃1

𝑃𝑖
)

𝛾

(
𝑟𝐴+𝑡𝑃𝑖

𝑟𝐴+𝑡𝑃1
)

𝛼 𝑃𝑖
𝜃𝐴𝑖

𝜑𝑇𝑖

𝑃1
𝜃𝐴1

𝜑𝑇1
𝜌𝑖         (C11) 

Replacing 𝐵𝑖 in the indirect utility (10) and maximizing with respect to 𝑃𝑖, we find a 
new optimality condition, up to a normalization. With θ < 1, such that emissions per capita 
decrease with density (as suggested by our empirical results), the optimal density is higher 
than equilibrium population in polycentric cities. This suggests that, for larger cities, 
polycentricity may be more desirable.  
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Figure C.1: Marginal effects of structure depending on city size 

 

 
Note: Marginal effects of Moran´s I (our measure of monocentricity) depending on total population 
size of cities, and using coefficients from Table 5.  
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