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Abstract

The convergence debate of whether poorer countries are catching up with
richer ones has recently focused on the concept of club convergence, hence con-
vergence within groups of countries. Detecting club convergence in the distri-
bution of countries’ income per capita over time has, however, proved difficult.
I propose a novel indicator that captures intradistributional changes in one
number: With two clusters involved, changes in the critical bandwidth for uni-
modality reflect modes becoming more or less pronounced, which, respectively,
is evidence for club convergence or de-clubbing. Significance of the change can
be determined in a bootstrap procedure, while working with standardized den-
sities removes the influence of time-varying variance. For a 123-country income
per capita distribution, the new club convergence indicator shows that in the
1980s and 1990s, groups of poor and rich countries converged to two separate
points. But this development peaked at the turn of the millennium and has
since been followed by a de-clubbing movement, as some formerly poor coun-
tries are growing fast to catch up with the rich.
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1 Introduction

Are poorer countries gradually catching up with their richer peers? This key ques-
tion in international macroeconomics has spawned the huge growth literature on
convergence.

The focus of the literature on convergence has in the past decades shifted from
absolute convergence in GDP per capita across the world towards club convergence
within groups of countries. This is motivated by two findings: When restricting the
dataset to groups of similar countries, such as OECD countries, rather than looking
at the global sample, studies are much more likely to report β-convergence (a negative
relation between countries’ initial GDP per capita level and their subsequent growth
rates) and σ-convergence (a decreasing variance in countries’ log GDP per capita).1

Furthermore, absolute convergence across the whole distribution should manifest
itself in a unimodal shape with ever-higher concentration around this mode. For
some decades the distribution of GDP per capita has, however, exhibited a clearly
multimodal shape, also called "Twin Peaks" by Quah (1996).
The term club convergence, as coined by Baumol (1986) and elaborated upon by
Quah (1993, 1997), involves convergence of the GDP per capita levels only of coun-
tries in the same "club", of which there exist several. Theoretical models explaining
the presence of these multiple steady states feature, among others, heterogeneity of
technology, human capital and fertility across countries (Galor, 1996) or countries
interacting with trading partners (Quah, 1996). But to what extent does the mul-
timodality of the GDP per capita distribution really give evidence of such a club
convergence process?

1For details on β-convergence see Barro (1991) and Mankiw et al. (1992), for σ-convergence
Barro and Sala-i-Martin (2004). Overviews of the convergence literature are given by e.g. Temple
(1999) and Islam (2003).
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Figure 1: Kernel Density Estimation of the Absolute Income Per Capita Distribution Across the 123-
Country Data Set in the Years 1995 and 2010
The graphs are kernel density estimates based on Gaussian kernel and Silverman’s rule of thumb bandwidth.

Given the empirical relevance of club convergence, it is all the more unsatisfactory
that this concept remains rather elusive from an econometric point of view. In the
literature one cannot find an unambiguous formal definition for club convergence,
nor a distribution-based test for it.2 This is where this paper makes a contribution.

Consider the two plots of the income per capita distribution in 1995 and 2010 of a
worldwide dataset comprising 123 countries (Figure 1). In both years the distribu-
tion clearly shows a high mode of poorer countries and a smaller one of rich countries.
But this bimodal shape per se does not yet mean that club convergence has taken
place between 1995 and 2010. In fact, if poorer and richer countries have converged
towards separate points, these two modes must have become more pronounced over
time. Now has this been the case? Visual inspection of intradistributional changes
can be tricky and potentially misleading. The overall increase in mean income and
in the distributional variance also complicates the direct comparison. And what con-
clusion on club convergence should the researcher draw if, say, one mode becomes

2There are panel data tests that can accommodate the club convergence hypothesis as cointe-
gration between countries’ income per capita time paths, such as the test by Hobijn and Franses
(2000). However, these tests can be troubled by ex-ante assumptions for determining cluster size
and membership, an issue that Canova (2004) addresses by working with Bayesian techniques. It
would, nevertheless, be desirable to have a frequentist, nonparametric method for identifying club
convergence to let the data speak for themselves when analyzing changes in the income per capita
distribution.
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more and the other one less pronounced?

The contribution of the paper is to propose a ready-to-use club convergence indicator
that tracks over time how pronounced the multimodality of the distribution is. The
new measure builds upon the literature of nonparametric multimodality tests pro-
posed by Silverman (1981, 1983, 1986) and implemented by Bianchi (1997). These
widely-used tests involve the calculation of the critical bandwidth for unimodality
to test for the presence of multiple modes at a given point in time. Here the notion
of the critical bandwidth is taken to the dynamic setting. The idea is that, when
working with standardized densities, an increase in the critical bandwidth for uni-
modality over time indicates club convergence.
The proposed club convergence indicator has three appealing features: (i) It has an
intuitive interpretation: If the two modes become more pronounced, more smooth-
ing is necessary to achieve a unimodal distribution, hence the critical bandwidth for
unimodality increases. (ii) It is statistically tractable: The significance of its change
can be computed by a simple bootstrap procedure. (iii) It comes at a low extra
cost: Researchers conducting the standard multimodality test already calculate the
critical bandwidth, so tracing it over time is an easy and natural extension.
The new club convergence indicator provides new empirical insights into the evolu-
tion of the income per capita distribution of 123 countries from 1970 to 2011: In the
1980s and 1990s, groups of poor and rich countries converged to two separate points,
but this club convergence movement peaked at the turn of the millennium. Since
then, a significant de-clubbing movement can be observed, as modes are becoming
less pronounced and some formerly poor countries are growing fast to catch up with
the rich.

The rest of the paper is organized as follows: Section 2 briefly reviews the kernel den-
sity estimation literature and its application to the multimodality of the income per
capita distribution. Section 3 contains the main contribution, namely constructing a
club convergence indicator based on changes in the critical bandwidth. The signifi-
cance of the changes is determined with the help of a bootstrap procedure. Section 4
lays out a comparison of the properties of the critical bandwidth to two polarization
measures, which show interesting parallels to the club convergence concept. This
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leads to Section 5, which contains the empirical application showing the Millennium
Peak in club convergence. Proofs and supplementary statistics have been relegated
to the Appendix.

2 The Critical Bandwidth in a Static Setting

2.1 A Brief Review of Kernel Density Estimation

When researchers want to estimate the distribution of income per capita across
countries without making any potentially limiting assumptions on its shape, they
typically recur to the nonparametric technique of kernel density estimation. Being
purely data-driven, this method allows to represent distributions that may be skewed,
multimodal or have other characteristics that a parametric model cannot capture;
for an introduction see Silverman (1986) as well as Bowman and Azzalini (1997).
Assuming we observe n data points xi (i = 1, 2, ..., n), the kernel density estimate of
density f(x) is given by

f̂(x) =
1

nh

n∑
i=1

K
(x− xi

h

)
(1)

with kernel function K and bandwidth h. Heuristically, a density function of the
form specified in the kernel is put around each of the observations and combined
additively to the overall density function, using h as the smoothing factor. The
widely-used Gaussian kernel3

K
(x− xi

h

)
=

1√
2π
e−

1
2
(
x−xi
h

)2 (2)

allows to write (1) as

f̂(x) =
1

nh

n∑
i=1

1√
2π
e−

1
2

(
x−xi
h

)2
. (3)

The crucial choice in a kernel density estimation is the bandwidth h because, by
regulating the amount of smoothing applied to the kernels around the data points,

3Other possible kernel functions include the Epanechnikov and the Triangular kernel. While the
shape of the density is not crucially influenced by the kernel function, I will stick to the Gaussian
kernel as it ensures the important analytical result by Silverman (1981) about the relation between
the modality and the bandwidth, see Theorem 1 below.
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it vitally determines the shape of the density and its modality.
Before going into more detail, let us impose the following standard regularity as-
sumptions on the density, in line with Silverman (1983) and Mammen et al. (1992):4

Assumptions 1. (a) f is a bounded density with bounded support on [xL;xU ].

(b) f is twice continuously differentiable on (xL;xU ).

(c) On the boundaries of the density it holds: f ′(xL+) > 0 and f ′(xU−) < 0.

(d) The modality of f is the number of local maxima x̃ where
f ′(x̃) = 0,

f ′(x) > 0 ∀x ∈ X̃N ∧ x < x̃,

f ′(x) < 0 ∀x ∈ X̃N ∧ x > x̃,

with X̃N denoting the neighborhood of the point x̃. A j-modal density hence has
j local maxima and j − 1 local minima.

(e) For all points with f ′(x) = 0, it holds that f ′′(x) 6= 0 and f(x) > 0.

(f) The first two moments of f exist and are finite.

Hence, the modality of a density is defined in terms of sign changes in its first
derivative. To see the dependence of the density modality on the bandwidth used,
let us consider an example. 300 observations are drawn from a Gaussian mixture
with three components:

f(x) =
2

3
· φ(x,−2, 0.52) + 1

6
· φ(x, 0, 0.52) + 1

6
· φ(x, 2, 0.12), (4)

where φ(x, µ, σ2) denotes the Gaussian distribution of x with mean µ and variance
σ2.

4Assumption (e) rules out certain turning points or "shoulders" in the density, which, even
though they are typically estimated well in practice, can change the asymptotic properties, see
Silverman (1983). Assumption (f) is an additional requirement which has to be imposed so that f
can be standardized.
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Figure 2: Kernel Density Estimation of (4) with Different Bandwidths

While the true underlying distribution has three modes, one can plot an estimated
kernel density with any number m of modes (1 ≤ m ≤ 300) depending on the band-
width used. Figure 2 shows three examples: A high bandwidth such as h = 1.20

induces so much smoothing that only the most pronounced mode remains. Grad-
ually decreasing the bandwidth makes more modes appear, so that at h = 0.40 a
trimodal distribution emerges. Further reducing the bandwidth reveals additional
smaller features and spikes that can be considered as spurious modes, as in the sex-
imodal distribution at h = 0.10.

Which bandwidth should one choose in practice when plotting a density? The vast
literature on optimal bandwidth selection offers various techniques which strike a bal-
ance between bias and variance, ranging from Silverman’s well-known rule of thumb
(Silverman, 1986) to more sophisticated cross-validation methods (Jones et al., 1996)
as well as adaptive bandwidth selection methods (see Cowell and Flachaire, 2015,
for an overview). For our measure of club convergence, however, we are not con-
cerned with the optimal bandwidth for appropriate representation but the critical
bandwidth for m-modality.
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2.2 The Critical Bandwidth for m-Modality and its Application to
(Static) Multimodality Tests of the Income per Capita Distri-
bution

The casual observation from Figure 2 that a lower bandwidth leads to the emergence
of additional modes has been proved formally by Silverman (1981):

Theorem 1. In a kernel density estimation of f(x) with a Gaussian kernel, the
number of modes is a right-continuous decreasing function of the bandwidth h.

Proof. See Silverman (1981).

He consequently defined the critical bandwidth for m-modality, CBm, as the small-
est bandwidth still producing an m-modal rather than (m+ 1)−modal density. For
all bandwidths h < CBm the estimated density will have at least m + 1 modes.
CBm can easily be computed by a binary search procedure.

Under the regularity conditions from Assumptions 1, one can derive the asymptotic
properties of CBm as the number of data points goes to infinity: Silverman (1983)
and Mammen et al. (1992) show that for m-modal densities, CBm converges to zero
at the rate n−

1
5 , while for densities with a higher modality, CBm stays larger than

a constant c0:

Theorem 2. Assume that the true density has j modes and that the regularity con-
ditions from Assumptions 1 hold. For the critical bandwidth for m-modality, CBm,
it then holds:

(a) If m ≥ j, CBm p→ 0 at rate n−
1
5 as n→∞.

(b) If m < j, P (CBm > c0)→ 1 as n→∞.

Proof. See Silverman (1983) and Mammen et al. (1992)

The key contribution contribution of this paper is to propose an indicator of club
convergence based on changes in the critical bandwidth over time. This is a dynamic
measure, which vitally sets itself apart from the current use of the critical bandwidth
in a static setting. In the literature, a typical application of the critical bandwidth
is for (static) multimodality tests: How many modes does the income per capita
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distribution in a particular year have?
The null of m-modality is tested against the alternative hypothesis of more than
m modes by calculating CBm. A bootstrap resampling procedure helps to decide
whether CBm should be considered as too high for typical m-modal densities, which
would lead to the conclusion that the density instead has at least m + 1 modes.5

The (static) bootstrap multimodality test can be used successively with increasing
m until one cannot reject the null anymore. It is not without critics: Mammen et al.
(1992) were among the first to point out the conservatism of the test. There have
since been some suggestions for ameliorations, for instance Hall and York’s (2001)
calibration adjustment.

The general concept has however remained unaffected and Silverman’s (1981) boot-
strap procedure based on CBm remains one key method for testing for multimodality
of a distribution at a given point in time. For instance, Bianchi (1997) applies it to
income per capita data from 119 countries in 1970, 1980 and 1989 and finds that he
cannot reject the null of unimodality in 1970, in contrast to the later years, where
he finds evidence of bimodality.

His findings are qualitatively supported by alternative procedures to test for multi-
modality, in particular those involving mixture models. Paap and van Dijk (1998)
model the income distribution of their 120-country sample from 1960 to 1989 with
a mixture of a Weibull and a truncated Normal density. They identify these compo-
nents with the help of the EM-algorithm by Dempster et al. (1977) and analyze the
changes in the component variances. This is also the procedure employed by Pittau
et al. (2010), who in an application with 102 workforce-weighted countries from 1960
to 2000 find three component densities.

Whether using the bootstrap test by Silverman (1981) or a mixture approach, these
5The bootstrap facilitates resampling from a density with a specified modality, CBm, by adding

a random component multiplied by a bandwidth. As implemented by Bianchi (1997), the sample
variance adjustment by Efron and Tibshirani (1993) ensures that the smoothed bootstrap sample
has the same variance as the original data. In the end, if the bootstrap’s critical bandwidth CBm?

exceeds the original CBm in relative terms less than test size α (e.g. 5%), the null of m-modality
is rejected in favor of (at least) (m+ 1)-modality.
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tests for multimodality are notably static. They only allow to draw conclusions on
the shape of the distribution of income per capita at a given point in time. The key
argument in this paper is that in order to make inference about club convergence,
one has to monitor the evolution of the distribution over time and in particular
observe whether the modes become more pronounced. Visual comparisons of dis-
tributional features can however be tricky and potentially misleading, especially
against the backdrop of an overall increase in variance. This can be resolved by
looking at changes in the critical bandwidth, which, as I will argue now, capture the
intradistributional changes underlying club convergence or de-clubbing.

3 An Indicator of Club Convergence based on Changes
in the Critical Bandwidth

3.1 The Use of Standardized Densities

The key idea is to use changes in the critical bandwidth to measure how the shape
of the distribution has changed: If the two modes of a bimodal distribution become
more pronounced, the critical bandwidth for unimodality goes up as more smoothing
must be applied to obtain a unimodal density.
A dynamic setting poses a challenge: The critical bandwidth based on raw data is
sensitive to changes affecting the whole distribution, which is important in light of
the well-known increase in worldwide variance. An indicator of club convergence
should only reflect how pronounced the modes are relative to the other parts of the
distribution and be invariant to changes in the overall distributional variance. This
can be achieved by working with standardized densities that have the same shape
as the original ones.6

Theorem 3. Let f(x) be a kernel density estimate with a Gaussian kernel, domain
[xL;xU ] and bandwidth hx. Standardize all n data points by subtracting the mean µ

6While standardization removes the influence of both mean and variance, only the latter is
crucial. A ceteris paribus increase in µ shifts the whole distribution, keeping the distance between
the data points and hence CBm unaffected. By contrast, an increase in σ clearly translates one-
to-one into an increase in CBm. A side benefit of centering around zero is that it facilitates the
interpretation of the standardized data.
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and dividing by the standard deviation σ, so that yi = xi−µ
σ for all i = 1, ..., n. The

transformed density f(y) then has the domain
[
xL−µ
σ ; xU−µσ

]
and it holds:

(a) f(y) = σf(x); hence the density values are scaled by σ.

(b) When employing the scaled bandwidth hy = σ−1hx, the transformed density f(y)
has the same shape as the original f(x).

Proof. See Appendix A1.

Given that the original and standardized data have the same shape, it follows directly
from Theorem 3:7

Corollary 1. Standardization of the data does not affect the result of Silverman’s
(1981) multimodality test.

3.2 Club Convergence and Changes in the Critical Bandwidth

In the following let us consider the setting of two country clusters that most empirical
studies find for the worldwide income per capita distribution in the past decades. A
cluster is a group of data points that can form a component in a mixture distribution.
It is well-known that not every cluster will show itself in its own mode because for this
it has to be sufficiently well-separated from the other cluster.8 But no matter how
well-pronounced the two modes are in the beginning, this paper argues that changes
over time are what is crucial for the convergence debate. Only intradistributional
changes can show the dynamics at work and potentially allow to make forecasts of
the developments to come. In order to do that, let us now relate changes in the
critical bandwidth for unimodality to club convergence:

7For the multimodality test in any given year it does not matter if the raw or standardized
data are used: Data standardization scales both the critical bandwidth and the comparison critical
bandwidths from the bootstrap resamples, leading to the same result as to how often one exceeds
the other. However, to trace the critical bandwidth over time as the club convergence indicator
does, the standardization is needed.

8Eisenberger (1964) derives necessary and sufficient conditions that the mean and variance of
the two component densities of a Gaussian mixture have to satisfy in order to show themselves in
two separate modes.
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Definition 1. Let f(x) be a standardized income per capita density with at most
two clusters that might or might not show themselves in two modes. The density is
observed at two points in time, t=1,2 and the critical bandwidths for unimodality at
t = 1 and t = 2 are calculated as CB1 and CB2. In this setting we say that we have

• club convergence if and only if CB2 > CB1.

• de-clubbing if and only if CB2 < CB1.

Heuristically, when the two modes become more (less) pronounced, the critical band-
width for unimodality,9 CB, increases (decreases) because more (less) smoothing
needs to be applied to make the bimodal shape turn into a unimodal one.

One caveat of this definition of club convergence is that it neglects the potential
mobility of countries between clubs. But while it is advisable to check that the
composition of the clubs is sufficiently stable over time, this seems to be a minor
drawback in practice. In fact, there is strong empirical evidence for very limited
mobility of countries between the clubs identified, see for instance Bianchi (1997)
and Paap and van Dijk (1998).

On the other hand, a big advantage of Definition 1 is that by recurring to CB, it
provides a club convergence indicator that captures the consequences of potentially
complex intradistributional changes in just one number. In fact, club convergence can
result from an increase in between-cluster separation, an increase of within-cluster
concentration or a combination of both. As we will see, all of these developments
will be reflected in an increase in CB:

Definition 2. Starting with a density f(x) consisting of two clusters, apply the
following transformation to all observations i = 1, ..., nc in one cluster:

yi = xi + a (5)

• If the transformation is applied to the poorer (richer) cluster and a is negative
or

9For notational convenience, I will henceforth write CB rather than CB1 when it is clear that
the critical bandwidth for unimodality is referred to.
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• if the transformation is applied to the richer (poorer) cluster and a is positive,

density f(y) is said to have an increased (decreased) between-cluster separation
with respect to f(x).

Corollary 2. With CB1 and CB2 denoting, respectively, the critical bandwidth of
the density before and after a ceteris paribus increase (decrease) in between-cluster
separation, it holds: CB2 > (<)CB1.

While there are a number of possibilities to alter the within-cluster concentration,
let us focus on the λ-squeeze or λ-dispersion, which is common in the polarization
literature (see Duclos et al., 2004). A λ-squeeze (λ-dispersion) leaves the mean of the
cluster unchanged and decreases (increases) the within-cluster standard deviation by
the factor λ:

Definition 3. Starting with a density f(x) consisting of two clusters, apply the
following transformation to all observations i = 1, ..., nc in one or both clusters:

y = λx+ (1− λ)µc, (6)

where µc with c = 1, 2 denotes the mean of the respective cluster.

• If 0 < λ < 1, it is called a λ-squeeze, resulting in a higher within-cluster
concentration in the respective cluster.

• If λ > 1, it is called a λ-dispersion, resulting in a lower within-cluster con-
centration in the respective cluster.

Corollary 3. With CB1 and CB2 denoting, respectively, the critical bandwidth of the
density before and after a ceteris paribus λ-squeeze (λ-dispersion), it holds: CB2 >

(<)CB1

To understand the implications of Corollaries 2 and 3, let us consider the example
of a data set containing 500 observations from the bimodal Gaussian mixture

f(x) =
1

2
· φ(x, 4, 12) + 1

2
· φ(x, 8, 0.52). (7)

This exemplary income per capita distribution consists of a cluster of poorer coun-
tries with higher within-cluster variance (a more heterogeneous group) and a cluster
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of richer countries with a lower within-cluster variance. The critical bandwidth for
unimodality of the standardized density is 0.7183. The second column of Table 1
shows some indicative values of this initial distribution, such as the difference be-
tween the modes and the within-cluster variances in relation to the overall variance.
It will be instructive to compare these indicators, together with CB, for the trans-
formed densities after conducting the ceteris paribus intradistributional changes (a)
to (c). While these transformations concern the original data points, the changes
in CB are calculated based on the standardized densities, filtering out the vari-
ance changes. Table 1 as well as Figure 3 show some characteristics of the raw and
standardized densities before and after the transformations:

Value Initial (a) (b) (c)

Mode-distance (raw) 4 6 4 2.5
Mode-distance (stand.) 1.8669 1.9426 1.9494 1.8684
σ2
C1 (stand.) 0.2572 0.1238 0.0701 0.1649
σ2
C2 (stand.) 0.0498 0.0340 0.0543 0.1277
CB 0.7183 0.8428 0.9072 0.7901
p-value CB change - 0.0024 0.0000 0.0778

Table 1: Descriptive Values of the Density (7) Before and After the Ceteris Paribus Changes in Cases (a)
to (c)

The distance between the modes is calculated both for the raw and standardized density. σ2
C1 and σ2

C2

refer to the within-cluster variance of cluster 1 and 2 relative to the overall variance. It holds: V aroverall =
1

1−n [(nC1−1)σ2
1 +(nC2−1)σ2

2 +nC1(µ1−µ)2+nC2(µ2−µ)2], where the two latter two terms refer to the
between-cluster variance. CB denotes the critical bandwidth for unimodality. The p-value for insignificance
of the change in CB is calculated based on the bootstrap procedure explained in Section 3.4 with 5000
replications.

(a) In the first case, the between-cluster separation is increased by adding a = 2

in (5) to the points in the rich cluster of the example distribution (7). The
rich group of countries can be interpreted as moving away from the poorer ones.
This is one typical case of club convergence, reflected by a substantial increase
in CB of the standardized densities from 0.7183 to 0.8428, as Table 1, column
(a), shows. The distance between the modes increases by construction, and,
because the between-cluster variance has gone up, the relative within-cluster
variance in both clusters decreases. This makes the modes more pronounced in
the standardized densities in the upper right panel of Figure 3.
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(b) A λ-squeeze with λ = 0.5 in (6) is applied to poor mode, increasing its within-
cluster concentration. This is another typical club convergence example and
CB clearly increases. Interestingly, the middle panel of Figure 3 shows that
while the poorer mode becomes more pronounced, the richer one decreases in
magnitude. This can be explained by the relative importance of the clusters: In
kernel density estimation, the more concentrated a group of points, the higher
their density values, at the expense of other parts of the density. Seeing one
mode become more and the other one less pronounced clearly complicates visual
inspection of club convergence, which shows the benefit of CB as an indicator.
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Figure 3: Raw and Standardized Densities Before (Solid Line) and After (Dashed Line) the Intradistribu-
tional Changes from Parts (a), (b) and (c)
The graphs are kernel density estimates based on Gaussian kernel and Silverman’s rule of thumb bandwidth.

(c) What happens if a decrease in between-cluster separation (a = 1.5 for the
poor cluster) is combined with an increase in within-cluster concentration
(λ-squeeze with λ=0.5 in the poor cluster)? The visual inspection of the lower
panel of Figure 3 is not very helpful in determining which of these two opposite
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effects dominates: In the raw density the clusters move together but with the
poorer one becoming more concentrated. Filtering out the decrease of overall
variance, the graph of the standardized densities displays the poorer mode as
slightly more pronounced and the richer one as less so. This is also reflected in
the within-cluster variances in column (d) of Table 1. Capturing the composite
effect of these changes in one number, CB increases to 0.7901 and hence points
to a club convergence movement, in which the increase in within-cluster con-
centration is larger than the decrease in between-cluster separation. Obviously,
this hinges on the magnitude of the effects: Additional simulations show that
when combining the same within-cluster concentration with a stronger decrease
of between-cluster separation (a = 2 rather than a = 1.5), the latter effect
dominates and CB decreases.

This example has illustrated how changes in the CB can capture in one number var-
ious intradistributional alterations. CB has the added advantage that it is readily
available if the researcher anyways analyzes the multimodality of the density at a
given point in time with Silverman’s (1981) test: He or she merely has to work with
the standardized densities and to track the test statistic over time. Incidentally,
applying the static multimodality test with 5000 replications to the cases (a) to (c)
would always reject the null unimodality can be rejected (p-value of 0) before and
after the transformation. Hence, a static test can only conclude that the density is
bimodal in each instance. By contrast, the changes in CB reflect vital intradistri-
butional movements that can be interpreted as club convergence or de-clubbing.

3.3 Asymptotic Properties of the Club Convergence Indicator

In order to prove that the change in CB can be consistently estimated, one can
extend the static results by Silverman (1983) and Mammen et al. (1992) presented
in Section 2.2. When the number of data points goes to infinity, the change in CB
based on the kernel density estimation is consistent and converges to a constant:

Theorem 4. Assume that the density has up to two modes at times t = 1, 2 and
that the regularity conditions from Assumptions 1 hold. Then,

(a) the change in the critical bandwidth for unimodality, CB2 − CB1, based on the
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kernel density estimates is a consistent estimator of the respective change in the
true densities.

(b) P (|CB2 −CB1| ≥ c)→ 1 as n→∞. The constant c depends on the underlying
distributional changes.

Proof. See Appendix A2.

3.4 Bootstrap Test for Significance of Changes in the Indicator

As with any measure that exhibits changes over time, in practical applications it
is important to check the significance of an increase or decrease in CB. For the
conclusion about club convergence and possible policy implications, it is vital that
structural changes rather than random noise should be the cause of the change in
CB. For this I suggest using a bootstrap procedure that incorporates longitudi-
nal correlation in the spirit of Biewen (2002): For inference in the field of inequality,
mobility and poverty, it is important to take into account the typically strong persis-
tence of the data. The magnitude of intradistributional changes has to be examined
against the backdrop of many countries keeping their place in the distribution.
A bootstrap can easily accomplish this by resampling from the same countries over
time rather than taking random samples of the two distributions. This can be seen
as a particular form of a block or cluster bootstrap, more precisely:

1. Start with two data sets Y1 and Y2 of the same countries i = 1, ..., n observed
at times t = 1, 2. Calculate the critical bandwidths for unimodality, CB1 and
CB2, for both data sets.

2. Draw a bootstrap sample of size n of the numbers 1, ..., n with replacement,
using them as indicators for the countries to be included in both Y?

1 and Y?
2.

3. For the samples Y?
1 and Y?

2, calculate the critical bandwidths for unimodality,
CB?

1 and CB?
2 .10

10Note that the setting in this bootstrap comparison of CB1 to CB2 is fundamentally different
from Silverman’s (1981) static bootstrap multimodality test. The latter draws smoothed bootstrap
resamples from a density with a prespecified modality (marginally m-modal) in order to come to
a conclusion about the m- vs. (m + 1)-modality of the density. Here, we are concerned with the
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4. Repeat Steps 2 and 3 a large number of times, each time storing the difference
CB?

2 − CB?
1 . If more than 1 − α (e.g. 95%) of all resampled differences

CB?
2−CB?

1 are positive (negative), conclude that CB has increased (decreased)
significantly.

This procedure allows to compare CB2 to CB1 in a purely data-driven way. Let
us carry out the bootstrap procedure with 5000 replications for the distributional
changes (a) to (c) considered above. The last row of Table 1 shows that the first two
changes in CB are highly significant even at the 99% confidence level. In case (c),
where effects work in opposite directions, the change in CB is smaller, but it is still
significant at the 90% confidence level.

The bootstrap-based determination of significance in changes in CB will be impor-
tant for the interpretation of the results in the empirical section. But in order to
put this measure of club convergence and its properties into perspective, let us now
compare CB to indices from the polarization literature.

4 Comparison of the Club Convergence Indicator to
Polarization Measures

Conceptually different from the convergence literature, which analyzes changes in the
income differences between countries over time, the polarization literature was de-
veloped to represent particular changes in the income distribution within a country.
However, polarization measures are now also applied to the worldwide distribution
of income between countries (see for example Pittau et al., 2010). The similari-
ties in how these measures react to the intradistributional changes underlying club
convergence make a direct comparison with respect to CB very appealing.

significance of the change in CB over time rather than the modality in a static sense. The reference
value is a resampling from the two data sets, taking into account longitudinal correlation between
countries.
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4.1 Wolfson’s (1994) Bipolarization Measure

Wolfson (1994) developed the notion of a country’s bipolarization as the degree to
which income is concentrated at both ends of the distribution rather than in the
middle. His measure was constructed to capture the widely-discussed idea of "the
disappearing middle class" and uses the formula

PW = 2
µ

m

(
1− 2L(0.5)−Gini

)
, (8)

where µ and m denote the mean and median of the distribution, L(0.5) is the value
of the Lorenz curve at the 50% income point (indicating the share of total income ac-
cruing to the poorer 50% of individuals) and Gini is the Gini coefficient of inequality
calculated as the expected mean difference between two incomes xi and xj ,

Gini =
E|xi − xj |

2µ
. (9)

Wolfson (1994) shows that any symmetric, mean-preserving transfer on either side
of the mean that leads to fewer inequality will increase bipolarization. An example
is reproduced in Figure 4, where an initially uniform distribution ends up bimodal.
Obviously, in such a situation CB would also increase considerably. If the situation
described a relative distribution of income across countries (rather than within) and
the transfer is interpreted as some countries growing faster than others, then we
would be in a typical club convergence setting.

0.25 0.50 1.250.75 1.00 1.50 1.75

Post-Transfer Density

Uniform Density

Income 

Density 

Figure 4: A Mean-Preserving Transfer Decreasing Inequality and Increasing Polarization based on Wolfson
(1994)
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4.2 The Polarization Measure by Esteban and Ray (1994) and
Duclos et al. (2004)

Parallel to Wolfson (1994), Esteban and Ray (1994) as well as Duclos et al. (2004)
developed and refined another polarization measure. They build on a political econ-
omy framework, with individuals identifying themselves with those of the same in-
come and feeling alienation towards others. For continuous income distributions, the
polarization formula is

PαER(f) =

∫ ∫
f(x)1+αf(y)|x− y|dxdy, (10)

where f(x) and f(y) refer to the density values of income levels x and y, while the
parameter α ∈ [0.25, 1] captures the degree of identification with people of the same
income. The dependence on α can be seen as a drawback of this measure: Duclos
et al. (2004) find that a ranking of countries according to their income polarization
is sensitive to the value of α used.11

4.3 Properties of the Critical Bandwidth in Comparison to the
Polarization Measures

Let us now derive several properties that CB fulfills and see to what extent they are
shared by the polarization measures PW and PER:

Theorem 5. Let x be income per capita data whose density f(x) has at most two
clusters that might or might not show themselves in two modes. Calculate CB as the
critical bandwidth for unimodality on standardized data x−µ

σ , while PW and PER are
calculated based on raw data x as well as mean-standardized data x

µ . Then it holds:12

11Duclos et al. (2004) also point to an ambiguous association of polarization with multimodality
in a general setting: The appearance of a third or fourth mode does not necessarily increase PER
because it might decrease average income differences. This, however, is not relevant in the unimodal
and bimodal setting in which we compare the polarization measures to CB.

12The polarization measures cannot be calculated based on standardized data: PW includes the
Gini coefficient and Lorenz curve, which do not allow negative income values. In the literature PW
is calculated either for raw data or mean-standardized data, which give the same result. PER is also
often calculated on mean-standardized data. Duclos et al. (2004) derive the relation between their
polarization measure for raw or mean-standardized data as PER

(
x
µ

)
= µα−1PER(x). Furthermore,
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(a) General Structure: A ceteris paribus increase (decrease) in between-cluster
separation or within-cluster concentration leads to an increase (decrease) in CB,
PW and PER.

(b) Scale Invariance: If all incomes are scaled by a constant factor c as in z = cx,

• CB remains unchanged.

• PW remains unchanged.

• PER
(
x
µ

)
remains unchanged. PER(x) is scaled: PER(z) = c1−αPER(x).

(c) Invariance to Absolute Income Changes: When adding a constant amount
a to all incomes as in z = x+ a,

• CB remains unchanged.

• PW changes to PW (z) = mx
mx+a

· PW (x), where mx is the median before the
transformation.

• PER(x) remains unchanged. PER
(
x
µ

)
is scaled: PER

(
z
µz

)
=
(

µx
µx+a

)1−α
PER

(
x
µx

)
.

(d) Dispersion Invariance: When applying a λ-squeeze (0 < λ < 1) or λ-
dispersion (λ > 1) to all incomes so that z = λx+ (1− λ)µx,

• CB remains unchanged.

• PW changes to PW (z) = λmxmz · PW (x).

• PER(x) and PER
(
x
µ

)
are scaled by the same factor to PER(z) = λ1−αPER(x)

and PER( zµz ) = λ1−αPER(
x
µx

).

(e) Symmetry of the Polarization Measure ("Swapping Rich and Poor"):
When applying the transformation z = xL + xU − x (with xL and xU denoting
the infimum and the supremum of the income data),

• CB remains unchanged.

• PW changes to PW (z) = mx
mz
·PW (x), where mx and mz denote the median

before and after the transformation.

Esteban and Ray (2012) provide an axiomatic comparison of PW and PER. As several of these
axioms involve settings with more than two modes, it is not possible to use all of them here for a
comparison with CB.
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• PER(x) remains unchanged. PER
(
x
µ

)
is scaled:

PER(
z
µz
) =

(
µx

xL+xU−µx

)1−α
PER(

x
µx

).

Proof. See Appendix A3.

The conclusion from this comparison is that for CB only the shape of the distribution
in terms of its modality matters, hence it is invariant to scalings, dispersions or
uniform absolute increases. By contrast, "the size of the pie" to be distributed
matters for both polarization measures. For instance, when all incomes increase by
a positive additive component as in (c), PW decreases because, heuristically, the poor
now own a larger share of the total pie, even though the shape of the distribution
has not changed.13 In a similar way, PW but not CB is sensitive to a transformation
swapping the rich and the poor in an asymmetric distribution. Concerning PER, in
Theorem 5 one again notes the dependence on the α-parameter, which shows up in
the adjustment factors that many of the transformations entail. By contrast, CB is
free of such parameters.14

5 Empirical Application: Club Convergence and
De-Clubbing in the Wealth of Nations

In the empirical application I make use of the critical bandwidth for unimodality to
gain new insights into the changing distribution of income per capita of countries
around the world in the last decades. Have there been club convergence movements
and which are the countries driving these developments?

13Chakravarty et al. (2007) have proposed a class of rather complex bipolarization measures that
do fulfill the property of invariance to absolute income changes.

14Perhaps the polarization concept that is closest in spirit to my use of the critical bandwidth
is proposed by Anderson’s (2004), who, in a bimodal setting classifies intradistributional changes
with the help of stochastic dominance conditions. However, the inclusion of the distributional
covariances into the computation can make it challenging to implement when many time periods
are involved. By contrast, CB captures the relevant intradistributional changes in one number and
can easily be traced over many years.
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5.1 The Data Set and Descriptive Statistics

From the Penn World Tables 8.0 (Feenstra et al., 2015) I take the rgde variable
(real GDP at chained purchasing power parity 2005 US Dollars) and divide it by the
country’s population, pop, at the given point in time. This way the values of income
per capita, x, for all countries and years are obtained.
For most countries the data is available from 1970 onwards and up to 2011, so these
years mark the beginning and end of my sample period. For the analysis of dis-
tributional changes over time, it is vital that the data set is balanced so that the
distribution consists of exactly the same countries over the years. Hence, I drop
all countries for which the data is not available during the whole period; this elimi-
nates in particular the ex-soviet republics which gained independence in 1990/1991.
Also, it has become standard in the growth literature (Mankiw et al., 1992) to drop
countries which are primarily oil producers or tiny states with a population below
300,000 because special economic conditions can be thought to apply there. In the
end, my data set contains 123 countries from every region of the world. A list of
all countries and their income values in 1970 and 2011 is contained in Appendix A4
(Tables 4 and 5).
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Figure 5: Descriptive Statistics for Income per Capita in the 123-Country Data Set

Figure 5 plots the evolution of some descriptive statistics of the data set over time. It
is not surprising to see that both the mean and median of income per capita increase
steadily throughout the last four decades, with the only short blip occurring in the
aftermath of the global financial crisis in 2009. Mean income per capita was USD
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4784 in 1970 and USD 13024 in 2011, which would equal an average yearly growth of(
µ2011
µ1970

) 1
41 −1 ≈ 2.47%. The fact that the median is below the mean reflects the pos-

itive skewness of the distribution. The second panel of Figure 5 displays measures of
dispersion. In line with the evidence on σ-divergence in the literature, the standard
deviation has increased steadily over time.15 Looking at the individual countries in
Tables 4 and 5, one can see that in 1970, income per capita ranges from USD 353
(Equatorial Guinea) to USD 23,659 (Switzerland), while 2011 it goes from USD 291
(Congo, Dem. Rep.) to USD 78,131 (Luxembourg). Against this backdrop, one
might wonder whether the increase in standard deviation is driven by some outliers
at the upper and lower tails of the distribution. This is however disproved by the
second graph in Figure 5: The interquartile range, which measures the difference
between the 25th and 75th percentile of the distribution and is robust to changes
affecting only the tails, grows almost in sync with the standard deviation.16 Hence,
the increase in dispersion is driven by countries all over the distribution, which un-
derpins my standardization procedure of subtracting the mean and dividing by the
standard deviation.

Columns 5 and 6 of Tables 4 and 5 in Appendix A4 show the standardized income
per capita values in 1970 and 2011 and can give an impression of countries’ relative
standing in the wealth of nations. The skewness of the distribution is reflected in
the range of the values: The poorest countries are located at less than one standard
deviation below the mean (Equatorial Guinea at -0.8539 in 1970, Congo, Dem. Rep.
at -0.8485 in 2011) while the richest ones are more than three standard deviations
above the mean (Switzerland at 3.6376 in 1970, Luxembourg at 4.3381 in 2011).
Countries that grew at about the average rate of 2.47% over the sample period,
like Peru or Greece, kept their standardized income values constant. But others
improved their relative standing or fell behind, depending on their growth rates,
which ranged from -2.92% (Liberia) to 8.27% (Equatorial Guinea). A regression of
the growth rates on countries’ initial income per capita levels, gives an insignificant

15σ-divergence denotes an increase in log variance of the distribution, for which an increase in
variance is a necessary pre-condition.

16For comparison purposes with the standard deviation, the interquartile range is divided by a
scaling factor of 2 · 0.6745, resulting from the interquartile range of the Gaussian distribution.
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β-coefficient which is zero up to the seventh decimal, in line with the absence of
unconditional β-convergence in the literature. But have the varying growth rates
fostered the formation of convergence clubs? Let us now look at the shape of the
distribution and its changes over time with the help of CB.

5.2 Results: Changes in the Distribution and the Critical Band-
width

Kernel density estimations of the absolute income per capita values at four points
in time are depicted in Figure 6. Obviously, the overall increase in variance can hide
underlying intradistributional changes, making a look at the standardized densities
in Figure 7 a bit more revealing. The big mode of relatively poor countries con-
tains most of the mass throughout the sample period, but the smaller mode of richer
countries close to two standard deviations above the mean evolves throughout the
years, appearing more pronounced in 1985 than in 1970 and slightly less so at the
end of the sample. But as was argued above, conclusions on club convergence based
on visual inspection of changes in the distribution might be misleading, so let us now
look at CB and its changes over time.
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Figure 6: Kernel Density Estimation of the Absolute Income Per Capita Distribution Across the 123-
Country Data Set in the Years 1970, 1985, 2000 and 2011
The graphs are kernel density estimates based on Gaussian kernel and Silverman’s rule of thumb bandwidth.

When examining the modality of the distribution and its changes over time, we
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Figure 7: Kernel Density Estimation of the Standardized Income Per Capita Distribution Across the
123-Country Data Set in the Years 1970, 1985, 2000 and 2011
The graphs are kernel density estimates based on Gaussian kernel and Silverman’s rule of thumb bandwidth.

have seen that CB has many benefits. However, one drawback of such a purely
data-driven method in practice is its sensitivity to outliers. If a multimodality test
were only based on changes in the first derivative of the density, a country such as
Luxembourg, which in 2011 is four rather than two standard deviations above the
mean, would constitute an individual mode. In the empirical multimodality liter-
ature, there are two simple approaches to deal with such isolated modes: Either
eliminating outlier countries from the sample right away or including a threshold in
the modality test that a density value has to exceed in order to classify as a mode.
Here, I opt for the second possibility and find that for the standardized densities any
threshold f(x) = τ with τ ∈ [0.02; 0.10] can be used to eliminate individual country
modes while appropriately classifying larger clusters as modes.17

Silverman’s (1981) bootstrap multimodality test clearly confirms that we are dealing
with a density with up to two modes, once individual outlier modes are neglected:
Conducting the (static) multimodality test for each year with 5000 bootstrap repli-

17Eliminating right-away the countries like Luxembourg, Macao and Switzerland that are outliers
at some point in time would not affect the general results. Interestingly, the position of these
countries varies as well: Switzerland forms an outlier mode in the 1970s but then falls slightly
behind in relative terms and becomes absorbed into the rich mode, while Luxembourg, and most
recently Macao, move away from the rich cluster to form individual modes.
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Figure 8: The Evolution of the Critical Bandwidth for Unimodality Over Time and p-Values of Silverman’s
(1981) Bootstrap Test for Unimodality with 5000 Replications

cations, one cannot reject the null of unimodality in the early years up to 1983.
Figure 8 shows the p-values of the unimodality test (dashed line) together with the
5% horizontal line for significance at the 95% level. After 1984, unimodality is al-
ways rejected - and bimodality never - which is in line with the findings from other
applications of multimodality tests in the literature, such as Bianchi (1997). But
while such static tests can only conclude that there was unimodality until the 1980s
and bimodality afterwards, we need a dynamic perspective to analyze the intradis-
tributional changes over time.

Does the bimodal shape already imply that club convergence has taken place? The
key insight from this paper is that this is not the case. The evolution of CB, the
critical bandwidth for unimodality, plotted as a solid line in Figure 8, shows a rather
nuanced picture: While the critical bandwidth varies around a constant level from
1970 to the middle of the 1980s, it exhibits a notable increase afterwards, but only
until the turn of the millennium, when it peaks. The highest value of 0.6251 is
reached in 2002. After that CB falls again until reaching levels of the 1970s and
early 1980s. Hence, we observe temporary club convergence into two modes of rich
and poor countries in the 1980s and 1990s, however, after the Millennium Peak,
there is a tendency of de-clubbing with modes becoming again less clearly separated.
These remarkable developments deserve a closer look.
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Let us first assess the significance of changes in CB over time as proposed in Section
3.4. Figure 9 shows the results from bootstrap procedures with longitudinal correla-
tion and 5000 replications: The p-values of a test of equality between CB in 1970 and
later years (left panel) form a U-shape around the Millennium Peak. Hence, CB’s
increase in the 1980s/1990s makes it significantly higher in the late 1990s and early
2000s than at the beginning of the sample in 1970. The subsequent decrease means
that in the late 2000s, CB is not significantly different from the 1970s anymore.
The importance of this de-clubbing movement is confirmed in the right panel: From
2005 onwards, CB is already significantly lower than its 2002 peak value (equality
test p-value of 0.01). Additional calculations with other reference years similarly
elucidate the significance of the developments.
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Figure 9: p-Values of Bootstrap Tests for Significance in the Change of CB since 1970 and 2002 (based on
5000 Replications)

5.3 Polarization Measures

Before analyzing in more detail the intradistributional changes leading to club con-
vergence in the 1980s/1990s and de-clubbing in the 2000s, let us see to what ex-
tent these developments are also captured in the polarization and inequality mea-
sures. In particular, I calculate Wolfson’s bipolarization index PW from (8), the
ER-polarization measure PER(α) from (10) (with α = 0.25 and α = 1, taking the
two limits of admissible values to mark the range of the measure) as well as the
Gini index (9) for (between-country) inequality. As was discussed in Section 4, these
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measures are calculated on mean-standardized data.

CB PW PER(0.25) PER(1) Gini

CB 1.0000 0.8109 0.8637 0.8558 0.7904
PW 0.8109 1.0000 0.9772 0.8579 0.9580
PER(0.25) 0.8637 0.9772 1.0000 0.9035 0.9699
PER(1) 0.8558 0.8579 0.9035 1.0000 0.7865
Gini 0.7904 0.9580 0.9699 0.7865 1.0000

Table 2: Correlation Coefficients between CB and Polarization and Inequality Measures

Table 2 shows that over the sample period, CB has a high correlation with the po-
larization and inequality measures, even though these tend to have an even higher
correlation among themselves. And when looking at the evolution of the measures
over time in Figure 10 some interesting differences stand out - despite the Millen-
nium Peak shared by all of them: In contrast to CB, Wolfson’s bipolarization (left
panel) starts to increase earlier (from the 1970s on) and more drastically so that
even after the decline in the 2000s it stays well above its initial level. Hence, the
income per capita distribution of countries was clearly more bipolarized in 2011 than
in 1970. This evolution is similar to ER-Polarization with identification parameter
α = 0.25 (right panel), even if overall it exhibits less variation. On the other hand,
ER-Polarization with α = 1 behaves more similar to CB over the sample period,
decreasing sizably after the Millennium Peak. The typically persistent Gini coeffi-
cient also shows a steady increase from 0.53 up to a Millennium Peak of 0.59, but
afterwards remains at a rather high level of around 0.57.
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A bootstrap test confirms the significance of these observed changes in the polariza-
tion and inequality measures:18 For PW , PER(0.25) as well as Gini, one can reject
equality with initial levels from the 1980s on, confirming our insight that the over-
all increase trumped the decrease after the Millennium Peak. Only PER(1) shows
a similar U-shape for the p-values as CB. One can conclude that, while the Mil-
lennium Peak appears in all polarization and inequality measures, only one shows
a sufficiently strong decrease in the 2000s that mirrors the de-clubbing implied by
CB.

5.4 Countries Driving the Club Convergence and
De-Clubbing Movements

What has been going on beneath the surface to result in the club convergence and
de-clubbing movements that the changes in CB indicate? Let us now turn to the
country level and analyze which countries have been driving these developments. In
order to reveal countries’ club membership, we use the trough or antimode between
the two modes in the kernel density plots from Figure 7 as the cut-off. In line
with intradistributional movements, the trough fluctuates slightly between 0.5 and
1 standard deviation above the mean over the years. One has to keep in mind
that with standardized data this whole analysis focuses on the relative rather than
absolute per capita income. If a country grows at a moderate but below-average
rate, it will fall behind its peers. The standardized data abstracts from the overall
huge increase in income per capita: In 1970, the cut-off between the two modes lies
at 1.00 standard deviation above the mean, which would correspond to an income
per capita level of USD 9,950, while the cut-off in 2011 at 0.58 would correspond to
an income per capita of USD 21,365.
The ensuing division of countries into the poor and rich club proves to be remark-
ably stable over time, confirming a key finding in the growth literature that comes
with the club convergence interpretation. In fact, 109 out of the 123 countries in the
data set stay in the same club for each of the 42 years from 1970 to 2011. Table 3
lists the countries in the poor and rich club at the end of the sample period, print-
ing in bold the ones that changed clubs in between. The 28 countries in the rich

18The detailed results are available from the author upon request.
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POOR CLUB IN 2011:

Albania, Argentina, Burundi, Benin, Burkina Faso, Bangladesh, Bulgaria, Bahamas, Belize, Bolivia,
Brazil, Bhutan, Botswana, Central African Republic, Chile, China, Cote d‘Ivoire, Cameroon, Congo (Rep.),
Congo (Dem. Rep.), Colombia, Comoros, Cape Verde, Costa Rica, Djibouti, Dominican Republic, Ecuador,
Egypt, Ethiopia, Fiji, Gabon, Ghana, Guinea, Gambia, Guinea-Bissau, Equatorial Guinea, Guatemala,
Honduras, Hungary, Indonesia, India, Iran, Jamaica, Jordan, Kenya, Cambodia, Laos, Lebanon, Liberia,
Sri Lanka, Lesotho, Morocco, Madagascar, Maldives, Mexico, Mali, Mongolia, Mozambique, Mauritania,
Mauritius, Malawi, Malaysia, Namibia, Niger, Nepal, Pakistan, Panama, Peru, Philippines, Poland,
Paraguay, Romania, Rwanda, Sudan, Senegal, Sierra Leone, El Salvador, Suriname, Swaziland, Syria, Chad,
Togo, Thailand, Trinidad & Tobago, Tunisia, Turkey, Tanzania, Uganda, Uruguay, Vietnam,
South Africa, Zambia, Zimbabwe

RICH CLUB IN 2011:

Australia, Austria, Belgium, Canada, Switzerland, Cyprus, Germany, Denmark, Spain, Finland, France,
United Kingdom, Greece, Hong Kong, Ireland, Iceland, Israel, Italy, Japan, Korea, Malta,
Netherlands, New Zealand, Portugal, Singapore, Sweden, Taiwan, United States

EXTREMELY RICH OUTLIER COUNTRIES IN 2011: Luxembourg, Macao

Table 3: Club Membership in 2011, Highlighting in Bold Countries Changing Clubs in 1970-2011

club are mainly highly-developed members of the OECD. But a closer look at the
within-club heterogeneity as well as some insightful country trajectories over time
shed more light on the club convergence and de-clubbing phenomena. Among the 14
"mobile" countries that changed clubs at least once during the 1970-2011 period, we
find the Asian tigers (such as Korea and Taiwan) as well as countries from the Eu-
ropean periphery (for instance Ireland, Spain, Cyprus) that typically managed the
transition from the poor to the rich mode in the 1980s or early 1990s and have since
become firmly established there. The club-changing countries also include Israel,
which briefly dipped below the cut-off point into the poor group before returning to
rich, or countries from the poor cluster, like Bahamas, which after some good years
in the 1970s did not manage to stay in the rich group.

Figure 11 shows the trajectories of some selected countries in terms of standardized
income per capita over the sample period and helps to illuminate the club conver-
gence and de-clubbing movements. While these intradistributional developments can
be complex in reality, the country-by-country examination reveals that they seem to
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be driven by a certain number of countries. In fact, most countries’ relative income
per capita positions are conspicuously stable, for example Germany or Kenya in the
left panel of Figure 11. In contrast to that, countries near the threshold can vitally
influence club convergence or de-clubbing movements: During the club convergence
periods of the 1990s, there were relatively few countries near the cut-off threshold
and both clusters became comparatively concentrated. One factor behind this may
have been the fall of communism: Countries like Hungary or Poland, which had
advanced towards the threshold from below, were temporarily thrown back into the
poor mode. On the other hand, recent crossers into the rich mode, like Korea or Ire-
land, continued to grow and move away from the threshold. This development went
on until the Millennium Peak in club convergence. After that, other driving forces
led to clusters becoming less concentrated again and more countries approaching the
threshold from both sides. There are a number of middle-income countries such as
Poland, Turkey and Chile whose sustained growth has pushed them closer to the
threshold in recent years. At the same time, we can see some countries from the
rich cluster, for instance Greece, pictured in the right panel of Figure 11, perform
badly and move closer to the threshold from above. Overall, this leads to the two
modes becoming less pronounced, which is captured by the decrease in CB after the
Millennium Peak.
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Figure 11: Trajectories of Selected Countries’ Standardized Income per Capita Over Time
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Which lessons can we draw from this analysis and which developments can we ex-
pect for the future? The idea of club convergence can be disheartening for poorer
countries, as it would imply convergence to their own poor mode instead of aspir-
ing to catch up with their richer peers. In this sense, it is positive to see that the
de-clubbing movement has taken over from club convergence after the Millennium
Peak. If middle-income countries keep up their above-average growth rates, they can
be expected to pass the threshold into the rich cluster in the coming years.

Overall, if developments continue as they did in recent years, we should see more
heterogeneity and less of a clear separation into a poor and rich mode, further de-
creasing the critical bandwidth for unimodality. Nevertheless, this does not mean
that there will be (unconditional) β-convergence: Some poor countries like China in
the left panel of Figure 11 have grown a lot in recent decades (even if it still has
a long way to go to come close to the threshold), but there are others, particularly
African countries, at the bottom of the distribution, which have stayed stuck there or
fell behind even more. Further extrapolating into the future, there might be another
club convergence movement into a very poor mode of countries left behind and a
mode comprising the rich and growing middle-income countries. These are impor-
tant insights, for instance for policymakers deciding on which countries to focus in
their poverty reduction and development aid programs.
While the de-clubbing movement of recent years gives a message of potential mobil-
ity in the worldwide income per capita distribution, only the countries which have
established an environment conducive to growth can reap the benefits.

6 Conclusion

In proposing a new measure of club convergence this paper has brought together
three strands of the literature: Club convergence, kernel density estimation and
polarization. Various intradistributional changes such as increases or decreases in
between-cluster separation and within-cluster concentration are all summarized in
just one number, which is easy to compute and interpret: An increase in the critical
bandwidth for unimodality indicates club convergence, while a decrease corresponds
to the opposite development of de-clubbing.
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The application of my dynamic measure has lead to new empirical insights: With
Silverman’s (1981) static multimodality test one can only conclude that the income
per capita distribution of 123 countries has been bimodal from the 1980s onwards
but not how these two modes evolve over time. This is achieved by looking at
changes in the critical bandwidth as a club convergence indicator: In the 1980s and
1990s, groups of poor and rich countries converged to two separate points, but this
club convergence movement went only until the turn of the millennium. Since this
so-called Millennium Peak in Club Convergence, a significant de-clubbing movement
can be observed. As some formerly poor countries are growing fast to catch up with
the rich and heterogeneity within clusters has increased, the modes are becoming
less pronounced.
The comparison between the club convergence indicator and the polarization indices
has elucidated some parallels, however, the former is the only measure to focus
exclusively on changes in the shape of the distribution. This might explain, why,
despite their overall high correlation, the polarization measures fail to show the
strong de-clubbing movement since the turn of the millennium.
It is now up to further research - and the political debate - how individual countries
can grow in order to achieve a prosperous position in the distribution.
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7 Appendix

7.1 Appendix A1: Proof of Theorem 3 on the Shape of a Stan-
dardized Density

Proof. In order to prove this theorem, one can make use of the following result for
the density of a transformed variable:

y = u(x) =⇒ fy(y) =
∣∣∣∂(u−1(y))

∂y

∣∣∣ · fx(u−1(y)) (11)

In our case the original density is the Gaussian kernel density estimate

fx(x) =
1

nhx

n∑
i=1

1√
2π
e−

1
2

(
x−xi
hx

)2
. (12)
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The standardization is applied to the n data points xi so that yi = xi−µ
σ , for all

i = 1, ..., n. In order to obtain a kernel density estimate of the standardized data
points, the domain points x also have to be standardized: y = x−µ

σ . This gives the
transformation

y = u(x) =
x− xi
σ

+ yi. (13)

The two statements of the proposition can now be proved:

(a) Plugging (13) into (11) gives

fy(y) =
∂(σ(y − yi) + xi)

∂y
· 1

nhx

n∑
i=1

1√
2π
e−

1
2

(
x−xi
hx

)2
(14)

= σ
1

nhx

n∑
i=1

1√
2π
e−

1
2

(
x−xi
hx

)2
= σfx(x) (15)

(b) (11) can be rewritten involving the bandwidth hy, when it is defined as hy =

σ−1hx, as well as by substituting x− xi from (13):

fy(y) =
1

nhxσ

n∑
i=1

1√
2π
e−

1
2

(
σ(y−yi)+xi−xi

hx

)2
=

1

nhy

n∑
i=1

1√
2π
e
− 1

2

(
y−yi
hy

)2
(16)

Hence, when estimating fy(y) using hy = σ−1hx as the bandwidth, the direct
correspondence of density values from (15) holds and ensures that the shape of
the density is unchanged.

7.2 Appendix A2: Proof of Theorem 4 on the Consistency of the
Change in the Critical Bandwidth

Proof. Statement (a) of Theorem 4 concerns the consistency of the estimated differ-
ence in CB2 − CB1 as n → ∞. From Theorem 2, proved in Silverman (1983) and
Mammen et al. (1992), it follows that at times t = 1, 2, CB1 and CB2 based on the
kernel density are consistent estimates for n → ∞. As a linear combination, their
difference CB2 − CB1 is a consistent estimate as well.
Concerning the lower bound of the difference in statement (b) of Theorem 4, let
us distinguish the different cases of unimodality (j = 1) and bimodality (j = 2) at
times t = 1, 2:
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• In the trivial but special case of j = 1 both at times t = 1, 2, by Theorem 2,
part (a), it holds that both CB1 and CB2 converge to zero at the same rate
of n−

1
5 . Hence,

CB2 − CB1
p→ 0 and c = 0 in P (|CB2 − CB1| ≥ c)→ 1. (17)

An intradistributional change that keeps the density unimodal will not affect
CB when n→∞.

• Assume now that j = 1 at t = 1 and j = 2 at t = 2. While CB1 asymptotically
converges to zero, CB2 is bounded from below by a constant c0 > 0 in Theorem
2. Hence, the difference CB2 −CB1 also converges to a positive constant and
one could pick c = c0 > 0 as a lower bound in P (|CB2 − CB1| ≥ c) → 1. So
the change from a unimodal to a bimodal shape is reflected in the fact that the
difference in CB is strictly positive, also asymptotically. By the same token,
in the converse case of j = 2 at t = 1 and j = 1 at t = 2, CB2−CB1 converges
to a negative constant but by working with the absolute value, c = c0 > 0 as
a lower bound in P (|CB2 − CB1| ≥ c)→ 1 still holds.

• Finally, consider j = 2 both at times t = 1, 2 but an intradistributional change
that, without loss of generality, leads to CB2 > CB1. From Theorem 2, part
(b), both CB1 and CB2 are asymptotically bounded by constants c(1)0 and c(2)0 :

P (CB1 > c
(1)
0 )→ 1 and P (CB2 > c

(2)
0 )→ 1 (18)

However, due to the intradistributional change leading to CB2 > CB1, one
can pick c(1)0 < c

(2)
0 and define c = c

(2)
0 − c

(1)
0 in

P (|CB2 − CB1| ≥ c)→ 1. (19)

This completes the proof of Theorem 4.

7.3 Appendix A3: Proof of Theorem 5 on the Comparison of the
Critical Bandwidth to Polarization

Proof. (a) In a bimodal setting, the reaction of CB, PW and PER to a ceteris paribus
increase (decrease) in between-cluster separation or within-cluster concentration
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follows directly from the definition of the measures, see Corollaries 2 and 3 in
Section 3 for CB as well as Esteban and Ray (2012) for PW and PER .

(b) Scale Invariance:

• The standardized values on which CB is calculated are unaffected by a
multiplicative factor c in z = cx: z−µz

σz
= cx−cµx

cσx
= x−µx

σx
.

•
PW (z) = 2

µz
mz

(
1− 2Lz(0.5)−Giniz

)
(20)

with z = cx can be reduced to PW (x) by making use of Lz = Lx, Giniz =
Ginix, µz = cµx as well as mz = cmx.19

• In
PαER(z, w) =

∫ ∫
f(z)1+αf(w)|z − w|dzdw, (21)

one can make use of

z = u(x) =⇒ fz(z) =
∣∣∣∂(u−1(z))

∂z

∣∣∣ · fx(u−1(z)). (22)

to obtain the density f(cx) (and equivalently f(cy)). With z = cx = u(x),
f(z) = 1

cf(x) as well as dz = c · dx, one gets

PαER(z, w) =

∫ ∫ (1
c
f(x)

)1+α 1
c
f(y)|cx− cy|c2dxdy = c1−αPER(x, y).

This is the homogeneity of degree zero property Duclos et al. (2004) point
out: Mean-standardizing (c = 1

µ) the data scales PER by µα−1. It can
directly be used to prove the second part of the statement, namely the
scale-invariance for polarization based on mean-standardized data:

PER

( z
µz

)
= µα−1z PER(z) = (cµx)

α−1c1−αPER(x)

= µα−1x µ1−αx PER

( x
µx

)
= PER

( x
µx

)
(23)

(c) Invariance to Absolute Income Changes:
19This is also the reason why PW is the same both on raw and mean-standardized data: Mean-

standardization can be seen as a scaling by a constant c = 1
µ
.
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• The standardized values on which CB is calculated are unaffected by an
additive constant a in z = x+ a: z−µz

σz
= x+a−(µx+a)

σx
= x−µx

σx
.

• Similar to part (a), PW (z) with z = x + a can be expressed in terms of
PW (x), using µz = µx + a, mz = mx + a and Giniz = µx

µx+a
Ginix. With

Lx(0.5) =

∑0.5n
j=1 xj

nµx
(24)

one can write Lz(0.5) in terms of Lx(0.5):

Lz(0.5) =

∑0.5n
j=1 zj∑n
k=1 zk

=

∑0.5n
j=1 xj + 0.5 · n · a
n(µx + a)

=
Lx(0.5) · n · µx + 0.5 · n · a

n(µx + a)
(25)

Hence, PW (z) can be expressed as

PW (z) = 2
µx + a

mx + a

(
1− 2

Lx(0.5) · µx + 0.5 · a
µx + a

− µx
µx + a

Ginix

)
, (26)

which after some algebra simplifies to PW (z) = mx
mx+a

· PW (x). Increasing
all incomes by a positive amount will thus decrease bipolarization.

• Following the same steps as in part (b) with the transformation z = x +

a, one can directly see that the densities and differences involved do not
change, hence PER(z) = PER(x). Together with part (b) this implies for
the mean-standardized data:

PER

( z
µz

)
= µα−1z PER(z) =

( 1

µx + a

)1−α
PER(x) =

( µx
µx + a

)1−α
PER

( x
µx

)
(d) Dispersion Invariance:

• The standardized values on which CB is calculated are unaffected by a λ-
squeeze or λ-dispersion z = λx+(1−λ)µx: z−µz

σz
= λx+(1−λ)µx−µx

λσx
= x−µx

σx
.

• Similar to (b) and (c), with z = λx+(1−λ)µx it holds that µz = µx, while
mz 6= mx unless the distribution is symmetric. Plugging Giniz = λGinix

as well as

Lz(0.5) =

∑0.5n
j=1 zj∑n
k=1 zk

=

∑0.5n
j=1 (λxj + (1− λ)µx)

nµx
= λLx(0.5) + 0.5(1− λ)

(27)
into the formula for PW (z) yields PW (z) = λmxmz · PW (x).
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• One can follow the same steps as in part (b) to show that PER(z) =

λ1−αPER(x) because the transformation z = λx + (1 − λ)µx induces the
same changes to the density and differences as z = cx with c = λ. For the
mean-standardized data it holds:

PER

( z
µz

)
= µα−1z PER(z) = µα−1x λ1−αPER(x) = λ1−αPER

( x
µx

)
(28)

(e) Symmetry of the Polarization Measure - Swapping Rich and Poor:

• The transformation equals a reflection of the distribution along the vertical
line at xL+xu

2 . The density values of two points of the distribution are
swapped, f(z) = f(xU + xL − x), which also holds for the standardized
densities. The modality of the distribution - and hence CB - are unaffected
by this symmetric reflection.

• For PW one can proceed analogously to parts (b) to (d) and derive µz =

xL + xU − µx, Giniz = µx
µz
Ginix as well as

Lz(0.5) =
−Lx(0.5) · µx + 0.5(xL + xU )

xL + xU − µx
. (29)

Substitution into the formula yields PW (z) = mx
mz
PW (x).

• Following the same steps as in part (b) with the transformation z = xL +

xU − x, one can see the densities and differences involved do not change
and PER(z) = PER(x). For the mean-standardized data:

PER

( z
µz

)
= µα−1z PER(z) = (xL + xU − µx)α−1PER(x)

=
( µx
xL + xU − µx

)1−α
PER

( x
µx

)
. (30)

7.4 Appendix A4: Overview of Countries in the Data Set
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Country code Country Absolute Income per Cap. Stand. Income Per Cap. Growth per Year
1970 2011 1970 2011 (1970-2011)

ALB Albania 3747.64 7364.71 -0.1998 -0.3771 0.0166
ARG Argentina 2950.94 14507.62 -0.3534 0.0988 0.0396
AUS Australia 16750.87 38499.27 2.3062 1.6974 0.0205
AUT Austria 12406.66 37282.53 1.4690 1.6164 0.0272
BDI Burundi 558.01 490.14 -0.8145 -0.8352 -0.0032
BEL Belgium 14252.76 35446.27 1.8248 1.4940 0.0225
BEN Benin 1153.63 1231.88 -0.6997 -0.7857 0.0016
BFA Burkina Faso 503.75 1051.52 -0.8250 -0.7978 0.0181
BGD Bangladesh 1364.96 1554.21 -0.6590 -0.7643 0.0032
BGR Bulgaria 3023.84 12906.67 -0.3393 -0.7800 0.0360
BHS Bahamas 12045.06 19366.61 1.3993 0.4226 0.0117
BLZ Belize 3510.06 7366.64 -0.2456 -0.3770 0.0182
BOL Bolivia 1629.12 4166.78 -0.6081 -0.5902 0.0232
BRA Brazil 3116.37 9294.53 -0.3215 -0.2485 0.0270
BTN Bhutan 1084.23 4607.02 -0.7131 -0.5609 0.0359
BWA Botswana 706.120 11810.75 -0.7860 -0.0809 0.0711
CAF Central African Republic 1032.93 617.29 -0.7230 -0.8267 -0.0125
CAN Canada 16064.66 35344.87 2.1740 1.4872 0.0194
CHE Switzerland 23658.73 44823.64 3.6376 2.1188 0.0157
CHL Chile 6336.88 15243.33 0.2992 0.1479 0.0216
CHN China 966.92 8068.60 -0.7357 -0.3302 0.0531
CIV Cote d‘Ivoire 2363.19 1371.83 -0.4666 -0.7764 -0.0132
CMR Cameroon 1233.60 1857.53 -0.6843 -0.7441 0.0100
COD Congo (Dem. Rep.) 836.55 290.63 -0.7609 -0.8485 -0.0255
COG Congo (Rep.) 1270.84 2426.87 -0.6772 -0.7061 0.0159
COL Colombia 4025.07 8407.92 -0.1463 -0.3076 0.0181
COM Comoros 1166.41 921.28 -0.6973 -0.8064 -0.0057
CPV Cape Verde 965.64 4125.81 -0.7360 -0.5929 0.0361
CRI Costa Rica 5446.86 10123.36 0.1277 -0.1933 0.0152
CYP Cyprus 5797.19 28183.25 0.1952 1.0101 0.0393
DEU Germany 12944.22 34519.98 1.5726 1.4323 0.0242
DJI Djibouti 5402.75 2391.99 0.1192 -0.7084 -0.0197
DNK Denmark 16978.34 35641.17 2.3501 1.5070 0.0183
DOM Dominican Republic 2705.56 8726.60 -0.4600 -0.2864 0.0290
ECU Ecuador 2533.23 6828.09 -0.4339 -0.4129 0.0245
EGY Egypt 905.40 4836.37 -0.7476 -0.5456 0.0417
ESP Spain 9549.38 28740.77 0.9183 1.0472 0.0272
ETH Ethiopia 556.73 782.71 -0.8148 -0.8157 0.0083
FIN Finland 13099.40 33747.33 1.6025 1.3808 0.0233
FJI Fiji 2951.07 4644.74 -0.3533 -0.5583 0.0111
FRA France 14512.68 31437.94 1.8749 1.2269 0.0190
GAB Gabon 5351.55 12402.88 0.1093 -0.0414 0.0207
GBR United Kingdom 13004.91 32259.81 1.5843 1.2817 0.0224
GHA Ghana 2114.91 2522.37 -0.5145 -0.6998 0.0043
GIN Guinea 1590.00 958.320 -0.6156 -0.8040 -0.0123
GMB Gambia 1266.55 1236.29 -0.6780 -0.7854 -0.0006
GNB Guinea-Bissau 1230.59 906.67 -0.6849 -0.8074 -0.0074
GNQ Equatorial Guinea 353.50 9175.83 -0.8539 -0.2564 0.0827
GRC Greece 8588.25 23698.65 0.7331 0.7112 0.0251
GTM Guatemala 2889.37 4235.90 -0.3652 -0.5856 0.0094
HKG Hong Kong 6777.86 38568.79 0.3842 1.7021 0.0433
HND Honduras 2108.75 2919.84 -0.5157 -0.6733 0.0080
HUN Hungary 4940.08 18852.01 0.0300 0.3883 0.0332
IDN Indonesia 825.20 4339.49 -0.763 -0.5787 0.0413
IND India 1222.28 3601.68 -0.6865 -0.6278 0.0267
IRL Ireland 8125.97 36704.62 0.6440 1.5778 0.0375
IRN Iran 3028.48 11818.47 -0.3384 -0.0803 0.0338
ISL Iceland 14466.64 31921.62 1.8660 1.2591 0.0195
ISR Israel 11729.06 25081.19 1.3384 0.8034 0.0187
ITA Italy 11089.52 29089.05 1.2152 1.0704 0.0238
JAM Jamaica 5474.39 5078.14 0.1330 -0.5295 -0.0018
JOR Jordan 2702.27 5092.50 -0.4013 -0.5285 0.0156
JPN Japan 11451.39 30427.21 1.2849 1.1596 0.0241

Table 4: First Part of the Countries in the Data Set

For the beginning and end of the sample, 1970 and 2011, both absolute and standardized values of income
per capita are given. Absolute values are expressed in PPP 2005 USD; standardization is carried out by
subtraction of the mean and division by the standard deviation. The growth rate is the average yearly
growth rate for the country based on the 1970 and 2011 absolute values.
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Country code Country Absolute Income per Cap. Stand. Income Per Cap. Growth per Year
1970 2011 1970 2011 (1970-2011)

KEN Kenya 1474.72 1297.57 -0.6379 -0.7814 -0.0031
KHM Cambodia 1298.75 2347.91 -0.6718 -0.7114 0.0145
KOR Korea Rep 1903.57 27522.30 -0.5552 0.9660 0.0673
LAO Laos 654.52 2623.87 -0.7959 -0.6930 0.0344
LBN Lebanon 5189.38 13158.62 0.0780 0.8900 0.0230
LBR Liberia 1596.03 474.47 -0.6145 -0.8362 -0.0292
LKA Sri Lanka 2560.14 4701.08 -0.4287 -0.5546 0.0149
LSO Lesotho 536.82 1487.82 -0.8186 -0.7687 0.0252
LUX Luxembourg 22242.02 78130.59 3.3645 4.3381 0.0311
MAC Macao 5327.00 69471.51 0.1046 3.7611 0.0646
MAR Morocco 1914.60 3647.45 -0.5531 -0.6248 0.0158
MDG Madagascar 1327.29 759.41 -0.6663 -0.8172 -0.0135
MDV Maldives 1108.23 10343.66 -0.7085 -0.1786 0.0560
MEX Mexico 6929.52 12709.82 0.4134 -0.0210 0.0149
MLI Mali 452.41 941.06 -0.8349 -0.8051 0.0180
MLT Malta 6220.10 23993.08 0.2767 0.7309 0.0335
MNG Mongolia 958.07 5219.47 -0.7374 -0.5200 0.0422
MOZ Mozambique 408.34 817.70 -0.8434 -0.8133 0.0171
MRT Mauritania 1665.12 2615.75 -0.6012 -0.6935 0.0111
MUS Mauritius 3806.06 9645.06 -0.1886 -0.2252 0.0229
MWI Malawi 774.91 802.26 -0.7727 -0.8144 0.0008
MYS Malaysia 2743.98 13468.81 -0.3932 0.0296 0.0396
NAM Namibia 4142.39 5146.14 -0.1237 -0.5249 0.0053
NER Niger 1030.42 522.560 -0.7235 -0.8330 -0.0164
NLD Netherlands 14861.05 38054.85 1.9420 1.6678 0.0232
NPL Nepal 754.17 1185.38 -0.7767 -0.7888 0.0111
NZL New Zealand 14157.92 26666.53 1.8065 0.9090 0.0156
PAK Pakistan 1453.33 2472.89 -0.6420 -0.7031 0.0130
PAN Panama 4630.29 12154.75 -0.0297 -0.0579 0.0238
PER Peru 3357.04 8923.98 -0.2751 -0.2732 0.0241
PHL Philippines 2076.39 3521.06 -0.5219 -0.6332 0.0130
POL Poland 4616.73 18430.43 -0.0323 0.3602 0.0343
PRT Portugal 6807.18 22289.90 0.3898 0.6174 0.0294
PRY Paraguay 1815.40 4351.30 -0.5722 -0.5779 0.0216
ROU Romania 2526.24 13574.31 -0.4352 0.0366 0.0419
RWA Rwanda 971.20 1201.50 -0.7349 -0.7878 0.0052
SDN Sudan 1010.46 2373.99 -0.7273 -0.7096 0.0211
SEN Senegal 1633.78 1411.72 -0.6072 -0.7738 -0.0036
SGP Singapore 5262.33 51643.66 0.0921 2.5732 0.0573
SLE Sierra Leone 1182.68 867.03 -0.6941 -0.8101 -0.0075
SLV El Salvador 816.88 1116.53 -0.7646 -0.7934 0.0077
SUR Suriname 4156.31 6699.65 -0.1210 -0.4214 0.0117
SWE Sweden 16515.69 36100.79 2.2609 1.5376 0.0193
SWZ Swaziland 1504.57 4239.25 -0.6321 -0.5854 0.0256
SYR Syria 2743.49 3919.02 -0.3933 -0.6067 0.0087
TCD Chad 1123.32 1851.12 -0.7056 -0.7445 0.0123
TGO Togo 1082.39 946.69 -0.7135 -0.8047 -0.0033
THA Thailand 1982.10 8491.04 -0.5401 -0.3021 0.0361
TTO Trinidad & Tobago 9203.12 20196.31 0.8516 0.4779 0.0194
TUN Tunisia 2200.01 6632.04 -0.4981 -0.4259 0.0273
TUR Turkey 5732.40 14437.29 0.1827 0.0941 0.0228
TWN Taiwan 3770.13 28413.56 -0.1955 1.0254 0.0505
TZA Tanzania 1287.40 1269.39 -0.6740 -0.7832 -0.0003
UGA Uganda 985.33 1187.03 -0.7322 -0.7887 0.0046
URY Uruguay 7049.31 12625.06 0.4365 -0.0266 0.0143
USA United States 20494.50 42646.21 3.0277 1.9737 0.0180
VNM Vietnam 700.06 3447.77 -0.7872 -0.6381 0.0397
ZAF South Africa 5312.42 8457.45 0.1018 -0.3043 0.0114
ZMB Zambia 3873.56 2051.71 -0.1755 -0.7311 -0.0154
ZWE Zimbabwe 2128.35 4347.79 -0.5119 -0.5781 0.0176

Sample Mean 4784.40 13024.30 0 0 0.0272
Sample Stand. Deviation 5188.72 15008.01 1 1 0.2449

Table 5: Second Part of the Countries in the Data Set

For the beginning and end of the sample, 1970 and 2011, both absolute and standardized values of income
per capita are given. Absolute values are expressed in PPP 2005 USD; standardization is carried out by
subtraction of the mean and division by the standard deviation. The growth rate is the average yearly
growth rate for the country based on the 1970 and 2011 absolute values.
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