Appendix: Parameter combinations determining the Density Modality of the Elliptical LC (Section 4.3)

In order to analyze the sign of the third derivative in (20)

icome and weal

review

$$L'''(\pi, a, b, d) = \frac{\frac{3}{16}(4\alpha e^2 - \beta^2)(2\alpha \pi + \beta)}{\sqrt{(\alpha \pi^2 + \beta \pi + e^2)^5}}$$

and hence the density modality of the Elliptical LC, the four parameter conditions $\alpha = b^2 - 4a < 0$, a + b + d + 1 = -e > 0, $d \ge 0$ and $a + d - 1 \ge 0$ need to be kept in mind. The positivity of the denominator and the negativity of the factor $4\alpha e^2 - \beta^2$ imply that the sign of L''' is the opposite sign of $2\alpha\pi + \beta = 2(b^2 - 4a)\pi + 2be - 4d$. Now one can distinguish several cases, which, taken together, give the result in the main text:

- For $b \ge 0$, $2(b^2 4a)\pi + 2be 4d$ is always negative, implying a positive third derivative and thus a zeromodal density.
- For b < 0, the sign of $2(b^2 4a)\pi + 2be 4d$ depends on the precise value of b. If it is sign-changing, it will reach the value of zero at the mode $\tilde{\pi} = \frac{2d-be}{b^2-4a}$. $\tilde{\pi}$ must fall within (0, 1), otherwise there is no valid mode and the density is zeromodal just as for $b \ge 0$. The values of b leading to $\tilde{\pi} = 0$ and $\tilde{\pi} = 1$ can be considered boundary values separating the unimodal from the zeromodal parameter range.
- The boundary $\tilde{\pi} = 0$ can be established at

$$2d - be = 0 \tag{A.1}$$

$$b = -\frac{a+d+1}{2} \pm \sqrt{\left(\frac{a+d+1}{2}\right)^2 - 2d}$$
(A.2)

If b < 0 is larger than $-\frac{a+d+1}{2} + \sqrt{\left(\frac{a+d+1}{2}\right)^2 - 2d}$, $\tilde{\pi}$ is negative, thus there will be no valid sign-change and the density is zeromodal (Example: a = 5, b = -0.5, d = 3). $b < -\frac{a+d+1}{2} + \sqrt{\left(\frac{a+d+1}{2}\right)^2 - 2d}$ constitutes a condition for b to be "sufficiently negative" for a sign-change.¹

• The boundary $\tilde{\pi} = 1$ can be established at

$$b = \frac{-4a - 2d}{a + d + 1}.$$
 (A.3)

If b < 0 is smaller than $\frac{-4a-2d}{a+d+1}$, $\tilde{\pi}$ is larger than 1, thus there is no valid sign-change. In this case the third derivative is always negative (because $2\alpha\pi + \beta$ is positive),

¹Only the larger of the two solutions of (2) is relevant because of the other stated restrictions on the parameter space.

implying an upward-sloping zeromodal density, to be neglected in practice (Example: a = 2.5, b = -3, d = 0). So $b > \frac{-4a-2d}{a+d+1}$ constitutes a condition for b not to be "too negative" for a sign-change.