Appendix: Parameter combinations determining the Density Modality of the Elliptical LC (Section 4.3)

In order to analyze the sign of the third derivative in (20)

$$
L^{\prime \prime \prime}(\pi, a, b, d)=\frac{\frac{3}{16}\left(4 \alpha e^{2}-\beta^{2}\right)(2 \alpha \pi+\beta)}{\sqrt{\left(\alpha \pi^{2}+\beta \pi+e^{2}\right)^{5}}}
$$

and hence the density modality of the Elliptical LC, the four parameter conditions $\alpha=$ $b^{2}-4 a<0, a+b+d+1=-e>0, d \geq 0$ and $a+d-1 \geq 0$ need to be kept in mind. The positivity of the denominator and the negativity of the factor $4 \alpha e^{2}-\beta^{2}$ imply that the sign of $L^{\prime \prime \prime}$ is the opposite sign of $2 \alpha \pi+\beta=2\left(b^{2}-4 a\right) \pi+2 b e-4 d$. Now one can distinguish several cases, which, taken together, give the result in the main text:

- For $b \geq 0,2\left(b^{2}-4 a\right) \pi+2 b e-4 d$ is always negative, implying a positive third derivative and thus a zeromodal density.
- For $b<0$, the sign of $2\left(b^{2}-4 a\right) \pi+2 b e-4 d$ depends on the precise value of b. If it is sign-changing, it will reach the value of zero at the mode $\widetilde{\pi}=\frac{2 d-b e}{b^{2}-4 a}$. $\widetilde{\pi}$ must fall within $(0,1)$, otherwise there is no valid mode and the density is zeromodal just as for $b \geq 0$. The values of b leading to $\widetilde{\pi}=0$ and $\widetilde{\pi}=1$ can be considered boundary values separating the unimodal from the zeromodal parameter range.
- The boundary $\widetilde{\pi}=0$ can be established at

$$
\begin{align*}
2 d-b e & =0 \tag{A.1}\\
b & =-\frac{a+d+1}{2} \pm \sqrt{\left(\frac{a+d+1}{2}\right)^{2}-2 d} \tag{A.2}
\end{align*}
$$

If $b<0$ is larger than $-\frac{a+d+1}{2}+\sqrt{\left(\frac{a+d+1}{2}\right)^{2}-2 d}, \widetilde{\pi}$ is negative, thus there will be no valid sign-change and the density is zeromodal (Example: $a=5, b=-0.5, d=3$). $b<$ $-\frac{a+d+1}{2}+\sqrt{\left(\frac{a+d+1}{2}\right)^{2}-2 d}$ constitutes a condition for b to be "sufficiently negative" for a sign-change. ${ }^{1}$

- The boundary $\widetilde{\pi}=1$ can be established at

$$
\begin{equation*}
b=\frac{-4 a-2 d}{a+d+1} . \tag{A.3}
\end{equation*}
$$

If $b<0$ is smaller than $\frac{-4 a-2 d}{a+d+1}, \widetilde{\pi}$ is larger than 1 , thus there is no valid sign-change. In this case the third derivative is always negative (because $2 \alpha \pi+\beta$ is positive),

[^0]implying an upward-sloping zeromodal density, to be neglected in practice (Example: $a=2.5, b=-3, d=0$). So $b>\frac{-4 a-2 d}{a+d+1}$ constitutes a condition for b not to be "too negative" for a sign-change.

[^0]: ${ }^{1}$ Only the larger of the two solutions of (2) is relevant because of the other stated restrictions on the parameter space.

