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1. Introduction 
The global population is currently undergoing a rapid process of urbanisation. 

Each year, cities around the world host tens of millions of new inhabitants, with these 

increases heavily concentrated in low and middle income countries (United Nations, 

2018). Traditionally, urbanisation has been associated with a process of structural change 

and economic development. But today, poor countries urbanise faster and at a much 

earlier stage of development (see for instance Glaeser, 2014, and Jedwab and Vollrath, 

2015), which suggests that the drivers of urbanisation have changed. This has pushed a 

whole research agenda trying to explain rapid urbanisation in today’s developing 

countries (see for instance Cobbinah et al., 2015; Gollin et al., 2017; Jedwab et al., 2017; 

and Jedwab and Vollrath, 2019) as well as the phenomenon of ‘urbanisation without 

growth’ (Kojima, 1996; Fay and Opal, 2000; Bloom et al., 2008; and Castells-Quintana 

and Wenban-Smith, 2019).   

In this context, urbanisation and city growth are increasingly seen as an outcome 

of “push” rather than “pull” factors: people get displaced to cities as much as attracted 

by them (Lipton, 1977; Bates, 1981; Bairoch, 1988; Barrios et al., 2006; and Maurel and 

Tuccio, 2016). One of the push factors that has gained attention in recent years is the 

climate. A changing climate translates into significant disruption to living conditions, as a 

result of numerous changes to environmental conditions. These include slow-onset 

events, like for instance desertification, worse disease environments, the distortion of 

fundamental natural cycles and the collapse of entire ecosystems, as well as shocks, like 

hurricanes and flooding.4 These climate-related events already cause millions of people 

worldwide to move every year (Kaczan and Orgill-Meyer, 2020).  In 2016 only, over 24 

                                                      
4 Consequently, although the climate economics literature tends to rely on temperatures and rainfall, these two 
variables should be understood as capturing a changing climate, where even small changes in average temperature (or 
average rainfall) can correspond to dramatic and varied changes in environmental conditions relevant for social or 
economic outcomes of interest (see for instance https://climate.nasa.gov/effects/, and the discussion in Hsiang, 2016 
). With “only” 1º C. of global warming in the last decades, we already see notable effects on weather patterns and 
variability, particularly in terms of the frequency of more extreme weather events, as we show in Section 2 (and in 
Appendix B) using our data. 

https://climate.nasa.gov/effects/
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million people were displaced by sudden-onset climate events, with an additional 

unknown number of people moving in response to slow-onset hazards such as drought 

(Opitz Stapleton et al., 2017). As highlighted in the climate literature, a common 

adaptation to climate change is to move (Raleigh et al., 2008; Laczko and Aghazarm, 

2009; Castells-Quintana et al., 2018), with most climate-induced migration occurring 

within countries, from rural to urban areas, as rural and agricultural-dependent locations 

are the areas where the impacts of climate change to date are being felt most strongly 

(Yohe and Schlesinger, 2002; Cattaneo et al., 2019).5 Climate change therefore, as an 

ongoing reality and a looming threat, not only has the potential to displace populations 

from rural to urban areas (see Kaczan and Orgill-Meyer, 2020), but also to accelerate 

(and shape) the already rapid urbanisation underway in many developing countries, with 

important policy implications.6  

In this paper, we study how climate can impact the spatial distribution of 

population and economic activity within countries. Specifically, we exploit the random 

variation in historical weather conditions experienced by a given country from one 5-year 

period to the next, to identify the effects of climate on urbanisation.7 In contrast to the 

existing literature, we study not only the evolution of aggregate urban rates but several 

other dimensions of urbanisation, including measures of urban concentration, city 

growth, density and form. To do so, we build a unique global dataset on the location of 

                                                      
5 With rising sea levels and potentially increasing storm intensities, coastal cities are also vulnerable to the effects of 
further warming. To date the evidence suggests that urban populations displaced by large scale flooding, typically 
return to the same urban areas within a year of the flood (Kocornik-Mina et al., 2020).  
6 As the economic geography literature has shown, the spatial distribution of populations and economic activity has 
important implications for development. At the country level, the rates, speed, form, and characteristics of the process 
of urbanisation, are all relevant for economic performance (see for instance Henderson, 2003; Bertinelli and Strobl, 
2007; Brülhart and Sbergami, 2009). At the city level, the absolute size, density and form of cities, have also been 
shown to influence outcomes such as economic growth (Frick and Rodriguez-Pose, 2018), income inequality (Castells-
Quintana, 2018) and pollution (Ahlfeldt and Pietrostefani, 2019). Spatial fragmentation of cities is known to limit the 
benefits of agglomeration and is often associated with bad living conditions (Lall et al., 2017). 
7 While it is often argued that weather and climate are not the same, Hsiang (2016) shows that the marginal effect of 
the climate is exactly the same as the marginal effect of the weather, if both are evaluated relative to an initial climate. 
Or in other words, “[the] total effects of climatic changes … are also computed correctly in studies where marginal 
effects of weather are allowed to change based on underlying climatic conditions” (Hsiang, 2016, p.57), which is 
precisely the empirical set up that we implement in this paper.  
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population and economic activity, including aggregate census data, satellite data on built-

up areas, and data on light intensity at night, complemented with global climatic data, 

aggregated at the country level.  

Our paper closely relates to the literature that studies the connection between 

weather shocks and rural-urban migration, on the one hand, and urbanisation and city 

growth, on the other. Several papers in this literature use migration data to show how 

disasters and weather shocks regularly cause the displacement of populations: the works 

of Marchiori et al. (2012) for Sub-Saharan Africa (SSA), Jessoe et al. (2018) for Mexico, 

Strobl and Valfort (2013) for Uganda, Joseph and Wodon (2013) for Yemen, and Bryan 

et al. (2014) for Bangladesh, collectively underline the global nature of this phenomenon. 

Peri and Sasahara (2019) provide further global evidence on the migration response 

(within countries) to increasing temperature, in particular in middle-income countries.8 

On the other hand, other papers have identified climate change as a major underlying 

driver of urbanisation and city growth in SSA (see e.g. Barrios et al., 2006, Henderson et 

al., 2017).  

While all these papers suggest that climate change can influence rural to urban 

migration, and therefore urbanisation, to the best of our knowledge, there is no paper 

that tests the effects of weather variation on various dimensions of the overall spatial 

distribution of population and economic activity within countries using a long-run global 

panel of countries.9 Our paper aims to fill this gap. We contribute to the literature by 

providing evidence of the impact of climate on the spatial distribution of population and 

economic activity i) taking a global view and allowing for non-linear effects of climate, ii) 

studying heterogeneities, including by world regions, by baseline climate, and by socio-

                                                      
8 There is also evidence of climate change inducing international migration (see Cattaneo and Peri, 2016, for a global 
analysis, and Nawroztki et al., 2013, for migration from Mexico to the US), as well as studies on the expected 
international spatial economic impact of global warming (see Desmet and Rossi-Hansberg, 2015). 
9 Empirical evidence has mostly focused on aggregate urbanisation and the effects of (lack of) rainfall in SSA. Peri and 
Sasahara (2019) look at temperatures worldwide, but focus on rural-urban migration, and do not explore in depth other 
dimensions of the spatial distribution of population and economic activity within countries. 
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economic characteristics such as income and economic structure, and iii) by going 

beyond the aggregate urban rate to study other dimensions of the urban structure of 

countries, including urban hierarchy (between cities) as well as urban size, density and 

form (within cities).  

We find that weather variation – both rainfall and temperature – affects 

urbanisation, and that the marginal effects depend strongly on baseline climate. In 

particular, higher temperatures in places that are already hot, and lower rainfall in places 

where it is already scarce10, are associated with more urbanisation. In short, we identify a 

global non-linear relationship between climate and urbanisation. We find that these 

effects occur across the whole national urban structure (i.e., increasing urbanisation in 

both smaller and larger cities, and even in the largest city of the country). But we also 

show that weather variation can change the national urban structure, including the 

pattern of urban concentration, as well as the size, density and spatial structure of large 

cities, with primary cities becoming larger and denser but also more fragmented in 

response to deteriorating weather conditions. Our findings hold for our full global 

sample, although the effects are most pronounced for developing countries.  

The remainder of our paper proceeds as follows: In Section 2, we present our 

data and provide a descriptive analysis of the co-evolution of our climatic variables and 

different measures capturing the spatial distribution of populations within countries. 

Section 3 presents the results of our econometric analysis: at the national level, both for 

aggregate urban rates (Section 3.1) and changes in the national urban structure (Section 

3.2), and at the city level (Section 3.3). Finally, in Section 4 we discuss our results and 

conclude with policy implications and avenues for further research. 

 

                                                      
10 As a short-hand, we sometimes refer to these circumstances as “deteriorating climatic conditions”. This corresponds 
closely to the findings in Burke et al. (2015) that country level productivity is increasing in temperature (for colder 
countries) up to the optimum, and decreasing in temperature for warming beyond that point (in hotter countries).  
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2. Data  

 To study how the spatial distribution of population and economic activity within 

countries has reacted to changes in the climate, we build a unique global dataset for 151 

countries (and cities) worldwide over several decades, combining information from 

different sources, including aggregate census data, satellite data on built-up areas and 

pixel-level data on light intensity at night, along with global climatic data. Next, we 

provide descriptive statistics of our climate and urban variables, while Table A.1 in 

Appendix A contains a list of variable definitions and sources.11  

 

2.1 Climate data: 

Our climate variables are based on historical weather data, including temperature 

and rainfall observations, and are derived from monthly global gridded data, which have 

been aggregated to country means. In our baseline specifications, we use simple area-

weighted country means of our climate variables.12 In particular, we construct two main 

climatic variables: ave_rain and ave_temp, which measure mean annual average rainfall (in 

meters per year) and temperatures (in degrees Celsius), respectively, at the national level, 

over 5-year time periods from 1950 to 2015. 

For robustness, we also construct a gridded weather dataset, merged with gridded 

population data, and urban area identifiers, from which we derive a number of alternative 

aggregations of the weather data.13 These include national level aggregates, weighted by 

population, including weather variation in all grid-cells or, alternatively, in rural (non-

                                                      
11 Figure A.1 in Appendix A maps the countries included in our sample divided into 8 world regions. 
12 The country-level datasets that we use were obtained from the World Bank’s Climate Change Knowledge Portal 
(CCKP): https://climateknowledgeportal.worldbank.org/download-data (last accessed on 18 June 2020). These are 
simple area-weighted country means, based on gridded data from the University of East Anglia’s CRU dataset (see 
Harris et al. 2014).  
13 The gridded weather data are drawn from the CRU TS version 4.03 dataset from the University of East Anglia, 
which we merge with gridded population data from the Global Population of the World v4. Urban areas are identified 
based on urban extents data from the Global Rural Urban Mapping Project v1.  

https://climateknowledgeportal.worldbank.org/download-data
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urban) grid-cells only (as used in e.g. Dell et al. 2012).14 For the city-level analysis 

reported in Section 3.3, we further construct city-specific versions of our climate 

variables based on weather variation in the proximity of the city, and based on national 

level weather variation weighted by distance to the city. We also consider other climatic 

measures commonly used in related papers: we construct rainfall and temperature 

anomalies (as used in e.g. Barrios et al., 2006, and Hendrix and Salehyan, 2012), and 

decennial changes (as used in Peri and Sasahara, 2019). Finally, we consider potential 

interdependencies between rainfall and temperatures (in line with e.g. Matiu et al., 2017) 

and construct a moisture index that captures potential evapotranspiration (as used in e.g. 

Henderson et al., 2017). Appendix B provides formal definitions and details on the 

construction of all our climatic variables. Table 1 shows descriptive statistics, for the full 

panel of country level 5-year periods used in our analysis, and distinguishing between 

low-, middle and high-income countries.15 Descriptive statistics by world region are 

presented in Table B.2 in Appendix B. 

 
 
Table 1: Summary stats for main weather variables, world and by income level 
 

 Long-run average (1950-2015) Long-run changes (1950-2015) 

 World Low Middle High World Low Middle High 

Ave Rain 1.0293 1.1038 1.0816 0.8664 -0.0045 -0.068 -0.011 0.032 
 (0.7402) (0.6617) (0.8229) (0.6550) (0.133) (0.134) (0.111) (0.113) 
Ave Temp 18.18 23.05 18.81 13.67 0.88 0.84 0.86 0.91 
 (8.44) (5.52) (7.65) (9.19) (0.44) (0.44) (0.46) (0.43) 
Rain Anom 0.04 0.02 0.01 0.10 -0.05 -0.51 -0.19 0.25 
 (0.55) (0.62) (0.54) (0.49) (0.82) (0.95) (0.79) (0.69) 
Temp Anom 0.25 0.09 0.21 0.43 1.57 1.80 1.67 1.40 
 (0.78) (0.82) (0.76) (0.76) (0.61) (0.61) (0.62) (0.57) 
Rain_dec_ch 1.05 0.79 1.21 3.65 -11.84 86.20 -28.52 -44.54 
 (137.26) (114.81) (139.70) (137.89) (259.24) (136.61) (230.87) (292.09) 
Temp_dec_ch 0.13 0.08 0.12 0.17 0.32 0.20 0.39 0.30 

                                                      
14 In practice (and as noted by Dell et al. 2012) these different aggregation methods produce very similar measures at 
the national level (see summary stats in Appendix Table B.1). In all cases, the pattern of results we obtain is 
qualitatively very similar, regardless of the method used to aggregate climate data to the national level.  
15 Low/middle/high-income countries are classified based on real GDP per capita in the given year. Countries with a 
log value smaller than 7 are classified as low-income, those with a value between 7 and 9 are classified as middle-
income and those with a value higher than 9 as high-income. These values are chosen following international 
distinctions and what is done in related papers. Using different thresholds does not alter the results presented in the 
paper. In our analysis, we also distinguish between developed vs. developing countries based on World Bank 
classification. 
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 (0.49) (0.40) (0.48) (0.55) (0.55) (0.71) (0.54) (0.52) 

Note: The table shows mean values for each variable by income group (the first four columns) and long-run 
changes in these variables by income group (in the last four columns). Standard deviations in parentheses. 
Variables are as defined in the text and in Appendix B.  

 
 

 
As Table 1 shows, mean annual rainfall in our sample is around 1 meter per year, 

while mean annual temperature is around 18 degrees Celsius (first column).16 We also see 

the long-established negative correlation between average temperatures and income, 

further illustrated below in Figure 1. Given the global nature of our analysis, it is 

important to note the wide variation in baseline climate (or average weather conditions) 

across our global sample, as illustrated by Figure 1, panels A and B, which show, 

respectively, the cross-sectional variation in average temperatures and rainfall in our 

sample.  

 
 
Figure 1: Global maps showing variation across countries in long-run average 
climate (1901-2015)  

 

 
 

                                                      
16 This is high relative to scientific estimates of global temperatures, reflecting the nature of averaging over country-
level observations, where small warm countries carry the same weight as large cold countries.  
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Note: Top panel above is rainfall (in mm per year) and bottom panel is temperature (in degrees Celsius), as 
described in the text. 

 
 

Global Warming  

The effects of climate change on weather patterns are also evident in our data. Over our 

sample period (from 1950-2015), average temperatures increased by 0.88 degrees Celsius 

(see column 5 of Table 1), which fits well with scientific observations of global warming, 

while average annual rainfall declined by about 5mm, or by about 1% when comparing 

changes at the country level to country average rainfall. Distinguishing by income levels, 

warming has been slightly higher in high-income countries (0.91 degree Celsius). Global 

trends in average temperatures and rainfall over the 20th century are illustrated for our 

sample of countries in Figure 2. Regionally, the strongest warming in our data is 

observed for countries at higher latitudes (usually richer countries), again in line with 

scientific observations (see Figure B.2 in Appendix B). This means that colder countries 

have experienced faster rates of warming than hot countries. However, a given amount 

of warming is likely to have differential effects for socio-economic outcomes, depending 

on initial or baseline climates.17 We test this idea explicitly in our analysis by allowing the 

                                                      
17 It has been estimated that the optimal temperature for economic productivity is around 13 degrees Celsius, with 
warming for relatively cold countries found to be productivity-improving, while for hotter countries further warming 
reduces economic productivity (see Burke et al., 2015). 
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marginal effects of weather variation on urban trends to vary with baseline climate. The 

strongest drying trends (relative to average rainfall) in our data are observed in places that 

are already relatively dry, such as North Africa and the Middle East (-11%), and SSA (-

7%), as depicted in Figure B.2 (in Appendix B). By income levels, this translates into an 

increase in average rainfall in high-income countries vs. a decrease in low and middle-

income ones. Beyond averages, it is important to note that the amount of warming 

observed over the 20th century has also had a notable effect on the frequency of relatively 

large deviations from average weather conditions. For example, the frequency of years 

with temperatures more than one standard deviation above country-specific means 

increased 34-fold, and more than two standard deviations above country means 

increased 256-fold, over the course of the 20th century (see Figure B.3 in Appendix B).  

 
 

Figure 2: Global mean rainfall and temperatures, 1901-2015 
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Note: The figures show rolling 30-year averages of annual average rainfall (in mm per year – left panel) and 
temperature (in degrees Celsius – right panel) for the countries in our data, such that the first data point in 
each figure (labelled 1930) represents the average over the preceding 30 years (1901-1930), and so on. The 
figures illustrate the pronounced warming (and drying) trends globally over the latter half of the 20th 
Century.   

 

2.2 Urban variables: 

To study the effects of changes in the climate on various urban outcomes, we 

examine not only what happens at the national level but also at the city level, something 

which, to the best of our knowledge, has not been done before in the literature using a 

global sample. To this end, we combine national-level census data on the urban hierarchy 

with city-level structural information about the primary city, gained from satellite data on 

night-time lights as well as built-up areas. 

In particular, we rely on the World Bank - World Development Indicators 

database and the United Nations’ World Urbanization Prospects (WUP), which includes 

urban and rural population every five years from 1950–2015, for all countries in the 

world. We study the urbanization rate (defined as population living in urban areas as 

percentage of total population) and distinguish between urbanisation in large cities (i.e., 

cities of more than one million inhabitants in 2018, as defined by WUP) vs. urbanisation 

in small and medium-sized cities (i.e., cities below one million inhabitants). The WUP 

dataset also includes data on population for all cities in the world with more than 300 

thousand inhabitants in 1990. We consider urban primacy, defined as the share of urban 

population living in the largest city, a commonly used measure of urban concentration 

(see Ades and Glaeser, 1995; Henderson, 2003). Finally, to consider the absolute size of 

cities, we also construct measures of average city size (following Castells-Quintana, 

2018).18 

To study outcomes at the city level, we look at primary cities. To be able to 

                                                      
18 For every country-year pair in our data set, our average city size variable gives the average population size of urban 
agglomerations in the country that had at least 300,000 inhabitants in 1990 using WUP data. 
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analyse not only changes in total population in the city, but also the within-city spatial 

distribution of population and economic activity, we rely on several data sources. We 

follow the growing strand of the literature within economic geography that makes use of 

geo-located data to study socio-economic dynamics (recent examples include Lessmann 

and Seidel, 2017; Henderson et al., 2018; Düben and Krause, 2019; Harari, 2020). We use 

WUP data, but also novel data from the European Commission’s Global Human 

Settlement Layers - GHSL (Florczyk et al., 2019), which combines Landsat satellite 

imagery on built up area with census information (Pesaresi and Freire, 2016). For the 

years 1975, 1990, 2000 and 2015, the GHSL data classify each pixel in a global grid 

according to the urban structure it belongs to. For each primary city, this allows us to 

distinguish between the high-density areas (more than 1500 people per sq km) and 

relative low-density areas belonging to the urban agglomeration. 

Finally, we also rely on satellite data on night-time lights to compute additional 

measures for the urban structure of primary cities. We use data from the Defence 

Meteorological Satellite Program's Operational Linescan System (DMSP-OLS), operated 

by the National Oceanic Administration Agency (NOAA), and available at the pixel level 

(30 arc seconds, corresponding to less than 1 square kilometre at the equator) as a yearly 

panel from 1992 to 2013.19 This data has become established as a proxy for local 

economic activity in recent years (see Henderson et al., 2012; Donaldson and Storeygard, 

2016; Candau and Gbandi, 2019). However, it has hardly been applied to study dynamics 

within cities, because within large cities many pixels reach the end of the scale and many 

parts appear equally bright. We overcome this problem by working with the lights values 

by Bluhm and Krause (2018), who apply a top-coding correction to the original data so 

                                                      
19 Because of their gradual changes, we assign the first year of the lights data, 1992, to 1990 as well as the last year, 
2013, to 2015, to match the quinquennial structure of our data (1990, 1995, 2000, 2005, 2010, 2015). Dropping the first 
and last period does not significantly alter our results. 
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they more adequately represent the brightness of large cities.20 Using these data, we 

compute i) light per capita (by dividing the sum of lights within the city boundaries by 

population data),21 ii) the spatial Gini coefficient of inequality in light within the city, and 

iii) Moran’s I, measuring spatial autocorrelation by indicating whether bright (dim) cells 

are surrounded by similarly bright (dim) cells (Moran, 1950); a high Moran’s I suggests a 

monocentric structure, while a low Moran’s I points to more fragmentation (see Tsai, 

2005; Bluhm and Krause, 2018).22  

Table 2 presents descriptive statistics for our main urban variables considered to 

describe the spatial distribution of population and economic activity within countries. As 

before, we look at cross-country averages for our world sample, as well as averages by 

income group (i.e., low, middle and high income). Table C1 in the Appendix provides 

the corresponding statistics for each world region. 

 

 

 

Table 2: Descriptive Statistics of Urban Variables by Income Group 

                                                      
20 The top-coding correction applied by Bluhm and Krause (2018) involves the use of a geo-referenced replacement 
algorithm, in which top-coded pixels get assigned value from the Pareto distribution. See further discussion in 
Appendix C. 
21 The maximal urban extents are given by the GHSL data from the year 2015 (end of sample). In each year, we count 
the lights that fall within these boundaries and divide them by the yearly population data from the WUP to obtain 
lights per capita. 
22 In computing Moran's I, we take the precise location of each pixel within a city into account. Using the inverse 
distance matrix as the spatial weights matrix, the index captures whether similar light intensities cluster together in 
space. Further details on the calculation of Moran’s I are included in Appendix C. 

 Latest available year (2010/2015) Long-run changes 

 World Low Middle High World Low Middle High 

Panel A: Country-Level variables 

Urb Rate 58.38 29.88 47.32 77.53 22.05 19.85 22.42 22.84 
 (23.04) (10.41) (16.97) (13.19) (12.67) (6.75) (10.67) (15.52) 
Urb > 1m 18.79 7.32 15.09 26.32 6.21 5.25 6.74 5.94 
 (18.53) (7.48) (12.67) (22.89) (8.09) (5.87) (7.15) (9.57) 
Urb < 1m 39.49 22.56 32.23 51.21 15.93 14.60 15.68 16.90 
 (19.98) (10.39) (15.21) (19.45) (11.47) (7.10) (10.81) (13.20) 
Urb Largest 19.15 12.29 15.38 25.69 5.96 8.51 6.55 4.79 
 (16.49) (6.23) (10.50) (21.08) (8.16) (5.33) (6.18) (10.33) 

Urb Non-Largest 39.06 17.59 31.94 51.83 16.10 11.34 15.87 18.05 
 (19.49) (6.52) (13.72) (17.73) (10.40) (5.18) (9.42) (12.03) 
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Note: The table presents summary statistics of urban variables at the national city-level for the primary city. Values in 
parenthesis show standard deviations. The long-run changes for the national variables are computed over the period 
1950/60 to 2010/15 (depending on data availability). The long-run changes for the city level variables were computed 
over the period 1950 to 2015 (population), 1975 to 2015 (density and high-density share) and 1990 to 2015 (lights-
based measures). 
 

 

Changes in Urban Structure  

As we can see in Table 2, urbanization rates are higher in richer countries, but low and 

middle-income countries have been catching up in recent decades. Urbanization in both 

large (>1m) and small and medium-sized cities (<1m) has increased in all countries; 

however, the increase in large cities has been most pronounced in North as well as Latin 

America, while urbanization in smaller cities has increased most strongly in SSA and the 

Middle East/North Africa. In contrast to urbanization rates, primacy rates are higher in 

low-income countries, but have been on the decline. This decline is particularly 

pronounced in SSA, which, nevertheless, still has the highest primacy rates. In terms of 

average city size, we see a huge increase in the last decades, in particular in South East 

Asia (SEA).  

Turning to the city-level data, primary cities have grown most strongly in 

population in middle-income countries, driven mostly by SEA. But it is low-income 

countries, often on the African continent, that have particularly dense primary cities: in 

low-income countries 95% of the city area is on average classified as high-density, a share 

Primacy 32.92 40.81 32.44 32.06 -2.48 -0.53 -2.19 -3.90 
 (17.63) (13.37) (14.78) (20.82) (12.56) (19.00) (11.17) (11.43) 
Ave. City Size 1268.84 1148.38 1273.05 1333.77 1015.91 1090.99 1133.20 913.52 
 (874.51) (506.50) (637.95) (1150.21) (774.96) (482.06) (618.73) (971.22) 
Panel B: Variables for the primary city 
Pop 4216.05 1674.78 4611.56 4664.93 3368.64 1593.88 4137.76 3232.74 
 (5771.8) (1067.15) (5825.59) (6547.66) (4765.43) (1012.51) (5296.05) (4893.57) 
Density 3082.23 3142.49 3096.55 3029.74 -521.31 -331.74 -306.53 -442.03 
 (2389.9) (1130.95) (1140.66) (3377.27) (3020.02) (1055.75) (1701.50) (3514.04) 
High-density share 85.79 95.50 87.29 81.64 2.66 6.61 2.99 1.07 
 (15.54) (5.91) (14.03) (16.68) (15.99) (16.46) (16.09) (15.46) 
Light per capita 52.05 8.14 24.24 95.62 4.14 0.36 5.05 3.92 
 (88.92) (7.02) (18.74) (123.36) (39.11) (5.72) (11.43) (59.32) 
Light Gini 30.78 27.52 30.15 32.68 -7.55 -23.74 -8.56 -1.97 
 (9.37) (5.49) (10.70) (8.85) (13.20) (10.04) (12.58) (10.23) 
Moran's I 82.23 76.18 81.73 84.58 -0.46 -2.58 -0.89 0.70 
 (9.30) (5.97) (10.75) (8.11) (5.83) (6.73) (5.92) (5.51) 
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which has increased by 6.6 percentage points since 1975. Night lights per capita in 

primary cities are particularly high in richer countries, as expected, and the difference 

with counterparts in low-income countries is now actually higher than in 1990. But 

inequality in lights within the primary city has decreased across the world, in particular in 

low and middle-income countries (with improved electrification being one potential 

driver). Finally, Moran’s I, as a measure of spatial autocorrelation within the primary city, 

exhibits some interesting features: first, it is higher the richer a country is, pointing 

towards more regular, monocentric, and, in general, well-planned cities. Second, primary 

cities in poorer countries, particularly SSA ones, are more fragmented – and are 

becoming even more so, as their decreasing Moran’s I index shows. The decline in light-

inequality (i.e., Gini) and in monocentricity (i.e., Moran’s I) suggests a process of spatial 

fragmentation, especially pronounced in the large cities of the developing world.23 

 
 

3. Empirical analysis   

 In this section, we present results of our empirical analysis that tests the effects 

of weather variation and gradual changes in weather patterns on the spatial distribution 

of population and economic activity. For simplicity, and to more easily connect with the 

literature, we proceed in three steps: first we test the effects of climate on the aggregate 

national urban rate (Section 3.1). Second, we test the effects of climate on other 

measures of the national urban structure, including urbanisation in large versus small and 

medium-sized cities, as well as measures of urban concentration (Section 3.2). Finally, we 

zoom in to the city level, to test the effects of climate on the size and spatial structure of 

cities (Section 3.3).  

                                                      
23 The UN-Habitat Report (2016) has highlighted the fragmented nature of large cities in many developing countries, 
especially in SSA. In very poor countries, fragmentation is expected due to deficient infrastructure and high 
commuting costs, making work and living places coincide. There is ample empirical evidence of persistently high 
transport costs and poor basic services in many cities in SSA (see for instance Castells-Quintana, 2017; Bluhm and 
Krause, 2018). In richer cities, and as transport systems improve and commuting costs fall, monocentricity is predicted 
to develop (Ogawa and Fujita, 1980; Proost and Thisse, 2019).  
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3.1. Climate and urbanisation: 

 Comparing countries based on their average temperature in 1950, we find that 

those with higher base-line temperatures (and rainfall) increased their urbanisation rates 

more over the 1950-2010 period. Being closer to the Equator, developing countries are, 

on average, warmer than their developed counterparts. But as shown before, warming 

has been stronger at higher latitudes, and the increase in urbanisation rates has been, on 

average, lower in countries that experienced higher warming over the 1950-2010 period. 

What about the relationship between warming and urbanisation controlling for base line 

climate? In Figures 3.1 and 3.2, we show this connection between urbanisation (i.e., the 

urban rate) and the climate, controlling by country fixed effects. In this way, Figures 3.1 

and 3.2 capture the connection between urbanisation and the climate considering only 

the within-country evolution over time (what we are after). Both figures suggest a 

relevant association: According to Figure 3.1, higher annual rainfall is associated with 

lower urban rates. According to Figure 3.2, higher temperatures are associated with higher 

urban rates.24  

 

 

Figures 3.1 and 3.2: Average annual rainfal and temperatures and the 

urban rate 

                                                      
24 Without controlling for country-fixed effects the relationship is actually negative, in line with the idea that countries 
that have warmed the most are, on average, those that have urbanised the least. This means that the observed 
association in Figure 3.2 is not driven by warming and urbanisation happening faster in the same countries. 
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Note: The Figures show binscatters, where each point represents 40 observations in the dataset. 
Climate variables are measured in the preceding 5-year period compared to the urban rate. In 
these figures rainfall is measured in mm per year, and temperature in degrees Celsius. The scatters 
control for country-fixed effects. 

 

To further test how climatic trends can drive urbanisation, we estimate a simple 

econometric model where the urban rate is regressed on our measures of climate 

conditions, as specified by Equation (1): 

 

                                     (1) 

 

where Urbit is the urban rate (the population living in urban areas as a percentage of the 

total population in logs) in country i in period t.25 Following the literature, and given data 

availability, we use 5-year periods (t = 1960, 1965, 1970… etc.). Our main explanatory 

                                                      
25 Our empirical set up follows closely the specifications used in the existing literature that relates urbanisation to 
weather variation at the national level (e.g. Barrios et al., 2006; Bruckner, 2012; Henderson et al. 2017; Peri and 
Sasahara 2019), as well as papers that relate income growth to weather variation at the national level (e.g. Dell et al., 
2012; Burke et al., 2015).  
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variables of interest are Climateit. In our main results, presented below, we focus on 

average annual rainfall (in meters) and temperature (in degrees Celsius), aggregated over 

the preceding 5-year period. For robustness, we also test the effects of rainfall and 

temperature anomalies and decennial changes in these variables, as well as alternative methods 

of aggregating climate data to the national level (see discussion in the data section, and 

results in Appendix D). As the climate-urbanisation relationship is likely to depend on 

each country’s baseline climate, we introduce our climatic variables in linear and 

quadratic terms, in line with the climate literature (see for instance Burke et al. 2015; 

Matiu et al. 2017). We also include year fixed effects, t, to control for global shocks, and 

country fixed effects, i, to control for time-invariant characteristics of countries. The 

standard errors, it, are clustered at the country level. Identification in our data rests on 

the assumption that inter-temporal variation in our climate measures is exogenous with 

respect to urban trends, conditional on country and period fixed effects.26  

Table 3 shows our main results describing the effect of variation in annual rainfall 

and temperature on the urban rate. The results in column 1 show significant non-linear 

climatic effects – i.e. depending on the country baseline climate.27 Results yield a U-

shaped relationship between the evolution of rainfall and the urban rate; for countries 

with low levels of rainfall, more precipitation leads to less urbanisation, but for countries 

with high rainfall, more precipitation leads to more urbanisation. For temperature, the 

pattern is similar: for countries with low mean temperatures, an increase in mean 

temperature leads to less urbanisation, but for countries where temperatures are already 

                                                      
26 Below, we also test the robustness of our main findings to the use of different measures of climatic variation, 
clustering errors at the country and time level, the inclusion of additional time-varying controls, including the log of 
GDP per capita and total country population, the inclusion of region-specific trends, and the inclusion of country-level 
linear time trends. 
27 According to McIntosh and Schlenker (2006), in a panel FE model, there are differences between a global quadratic 
functional form across units and a quadratic functional form within group. They propose to use a “hybrid estimator” 
to capture and distinguish both non-linearities (i.e., global and within). We have estimated our model in Equation (1) 
using this hybrid estimator. Results are only significant for the “global” non-linearities, confirming that our quadratic 
terms are basically capturing non-linearities across countries depending on their baseline climate (even when the main 
identification is within-country over time). 
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high, higher temperatures lead to more urbanisation. These results are consistent with 

the literature on rural-urban migration (see for instance Cattaneo et al, 2019; Kaczan and 

Orgill-Meyer, 2020), as well as the observed global non-linear effect of temperature on 

economic productivity (see Burke et al. 2015). For low rainfall and temperatures, an 

increase in any, or both, means better rural conditions. But when rainfall and 

temperatures are high, an increase means worse rural conditions, which creates an 

incentive to move to urban areas.  

 

Table 3: Main results, urban rate 

   (1) full sample (2) developed (3)  developing (4) low income (5) middle income (6) high income 

Dependent 
variable: 

log(urb) log(urb) log(urb) log(urb) log(urb) log(urb) 

              
ave_rain -0.6352*** -0.2806* -0.5626*** -1.0226** -0.4576** -0.2202 

 
(0.1766) (0.1449) (0.1983) (0.4277) (0.2156) (0.1683) 

ave_rain2 1.16e-04*** 2.63e-05 1.16e-04*** 2.41e-04** 8.27e-05* 6.26e-05 

 
(4.05e-05) (3.11e-05) (4.40e-05) (1.19e-04) (4.48e-05) (4.36e-05) 

ave_temp -0.2462*** 0.0162 -0.2803*** -0.0581 -0.2450*** -0.0643* 

 
(0.0400) (0.0216) (0.0787) (0.4546) (0.0713) (0.0381) 

ave_temp2 0.0066*** -0.0011* 0.0076*** -0.0021 0.0062*** 0.0009 

 
(0.0011) (0.0006) (0.0018) (0.0096) (0.0018) (0.0009) 

              

Year FE YES YES YES YES YES YES 

Country FE YES YES YES YES YES YES 

Observations 1606 396 1210 327 761 485 
No. of countries 146 36 110 44 105 63 
R-Square (within) 0.637 0.652 0.695 0.789 0.725 0.514 

Note: This table reports results of specifications based on Equation (1) and as described in the text. The dependent variable in each 
column is the log of the urban rate. Robust standard errors (clustered by country) in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 

 

As shown by columns 2 and 3 of Table 3, the results are driven primarily by 

effects in developing countries. This finding fits with expectations given that developing 

countries i) have a higher share of population living in rural areas, ii) are regions where 

the effects of climate change are being felt the strongest, and iii) is where populations 

have lower adaptive capacity. Furthermore, according to columns 4, 5 and 6, the reaction 

to changes in rainfall is strongest in low-income countries, consistent with previous 
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findings for SSA (see for instance Barrios et al 2010). For temperatures, the effect is 

strongest in middle-income countries, in line with results in Peri and Sasahara (2019).28  

Figures D.1, D.2 and D.3 (in Appendix D) show marginal effects for rainfall and 

temperatures on the urban rate, for the full sample, for developed countries, and for 

developing countries, respectively. For developing countries, the estimated marginal 

effects show that for rainfall, it is low rainfall that is associated with higher urbanisation.29 

According to our results, for countries with average annual rainfall below 500mm (per 

year), a 100mm reduction in average annual rainfall over a 5-year period results in a 5% 

increase in the urbanisation rate. For temperatures, we see the marginal effect taking 

opposite signs depending on the baseline temperature. In hot countries, higher 

temperatures are associated with more urbanisation, whereas in cold countries lower 

temperatures are associated with more urbanisation, again reflecting the expected effects 

of worsening climatic conditions.30 To illustrate the magnitude of estimated effects, for a 

relatively hot country, with average annual temperature around 25 degrees Celsius, a 1 

degree increase in average temperatures over a 5-year period would result in a 10% 

increase in the urbanisation rate.  

 

Robustness  

In Tables D.1 to D.4 in Appendix D, we present various robustness checks on our main 

findings. In Tables D.1 and D.2, we replicate the results in Table 3 for alternative 

measures of weather variation used in related literature. In Table D.1, we use population-

weighted average rainfall and temperatures, as in Dell et al. (2012), to capture the fact the 

                                                      
28 At the household level, according to Peri and Sasahara (2019) often it is not those with the lowest income that 
migrate first; low-income individuals may be constrained and therefore less likely to move given worse climatic 
conditions in rural areas, which in turn represent a negative income shock (see for example Gray and Mueller, 2012; 
Bryan et al., 2014). By contrast, the constraints to move are less likely to be binding at middle-income levels. 
29 The marginal effect turns positive at high levels of rainfall, although this effect is not statistically significant.  
30 The negative marginal effect of temperature on urbanisation appears for initial temperatures below around 15 degree 
Celsius, while the positive marginal effect appears for initial temperature above around 25 degrees Celsius. This would 
be the case of some countries in LATAM, SEA, and most countries in MENA and SSA. 
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effect of weather variation will be stronger in more populated areas. In Table D.2, we use 

decennial changes, as used for instance in Cattaneo and Peri (2016), and anomalies, as used 

for instance in Barrios et al. (2006).31 Results using population-weighted average 

temperature and rainfall, decennial changes and anomalies show similar results to those 

in Table 3, confirming the idea that when climatic conditions deteriorate urbanisation 

rates increase (although for decennial changes the coefficient for rainfall loses 

significance).32 In Table D.3, we check for a different clustering of residuals by country 

and time, for whether the effects depend on the degree of openness (following 

theoretical insights in Matsuyama, 1991), and controlling for additional time-varying 

controls, including the log of GDP per capita and total country population (at the 

expense of losing observations). Our results hold, and are significant for country-periods 

with high as well as low openness. Finally, in Table D.4, we consider the fact that rainfall 

and temperatures are not independent from each other (Matiu et al., 2017). First, we 

consider an interaction between temperature and rainfall. Second, we consider a moisture 

index (as used in e.g. Henderson et al., 2017). Finally, we consider the principal 

component of temperatures and rainfall. In all cases, we find highly significant 

coefficients, which are also robust to different specifications, including controlling for 

region- or country-specific linear trends. All these robustness checks reinforce our main 

results suggesting that when climatic conditions deteriorate urbanisation increases.  

 

Heterogeneity – By initial distribution of cities 

In Tables D.5 and D.6 in Appendix D, we perform a set of heterogeneity analyses. In 

Table D.5, we begin by testing the effects of climatic conditions on urbanisation 

                                                      
31 When looking at changes or anomalies we drop the quadratic term, following the specifications in the cited papers. 
Note that anomalies already capture the baseline climate by looking at deviations from the country’s long-run mean 
and therefore capturing country-specific shocks. However, results hold if we consider a quadratic specification. 
32 If anything, for temperature the results using the population-weighted versions of our climate variables show a 
slightly stronger and more precisely estimated effect.  
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depending on the initial number of cities per unit area in each country.33 In response to 

worsening climatic conditions, rural dwellers considering a move to urban areas likely 

face a trade-off between better employment opportunities (which should be increasing in 

city size) and cost of moving (which should be increasing in distance), with bigger cities, 

on average, likely to be further away.34 A higher number of cities per unit area is 

therefore expected to increase the propensity for rural-urban migration, especially for 

budget-constrained rural dwellers. In low-income countries, where the budget constraints 

to move play the strongest role, we find that the effect of higher temperatures on 

urbanisation is greatest for countries with a higher number of cities in 1960.35 

  

Heterogeneity – By baseline climate, agricultural share and world regions 

In Table D.6, we present heterogeneity effects by baseline climate, by agriculture’s share 

of GDP, and by world region. We show that the effects of rainfall and temperature 

anomalies on urbanisation are strongest in countries that are relatively hot (column 1) or 

wet (column 2), corresponding to the non-linear effects previously identified, as well as 

in countries with high agricultural share of GDP (column 3), as expected. With their 

livelihoods dependent on potentially small variations in temperature and precipitation, 

rural farmers are threatened by climatic shocks in a more immediate way than individuals 

not directly dependent on agriculture. It is known that, by lowering farm incomes, 

negative climatic trends - both one-off events and a succession of disasters - encourage 

                                                      
33 Defined as the number of cities (based on UN WUP data) per 1,000km2 (based on World Bank data for land area) 
for each country in 1960. We find significant differences across countries: while countries in SEA have a relatively high 
initial number of cities per area (0.077), countries in SSA have a relatively low initial number of cities (0.025), compared 
to the average in our data (0.056). Also, countries in SSA, as well as in Latin America, tend to very high degrees of 
urban concentration in few cities, and there is a debate whether secondary cities are catching up (Christiaensen and 
Kanbur, 2017; Bluhm and Krause, 2018; Castells-Quintana and Herrera-Idarraga, 2019).  
34 Mallick (2014) found that 25 percent of households affected by Cyclone Aila in Bangladesh in 2009 moved to 
neighbouring cities. Of those who moved to cities, 78 percent chose relatively large cities within the region, where they 
pursued jobs in the service industry (as cited in Ober, 2019). See also Raleigh et al. (2008) and Rigaud et al. (2018). 
35 Results in column 1 of Table D.5 show the opposite pattern – urbanisation responds most strongly to higher 
temperatures in places with low initial cities per unit area, likely reflecting the correlation between this measure and 
national level income. The interpretation of the result for low-income countries (column 4 of Table D.5) is further 
supported by insights from the case study presented in Appendix G, which highlights the diverse urban development 
patterns across developing countries with different initial urban structures.  



 23 

migration to cities (Brückner, 2012; Saldaña-Zorrilla and Sandberg, 2009; Neumann et al., 

2015). However, agriculture is not necessarily the only mechanism linking climate and 

population movement; as mentioned before, changes in the climate translate into higher 

frequency and intensity of extreme events (like droughts and flooding), which displace 

millions of people every year (see for instance Eckstein et al, 2018). Climate shocks have 

also been linked to conflict at the subnational level (see Harari and La Ferrara, 2018; 

Bosetti et al, 2018), which might act as a further channel linking climate shocks with 

migration to cities.  

 Finally, in column 4 of Table D.6, we test for regional differences in terms of the 

climate-urbanisation relationship and find some interesting variation across world 

regions. According to our results so far, the effect of changes in the climate depend on 

initial climatic conditions. As noted in Section 2.1, world regions differ substantially in 

their average climatic conditions. In SSA, where rainfall is already scarce, and shows a 

clear decreasing trend over the last decades, we find that periods with low rainfall and/or 

high temperatures are associated with higher urbanisation. However, in other regions (for 

instance in SEA, where rain can become excessive) we find a different pattern.36 These 

contrasting findings hint to differential effects of climate change in different world 

regions with different baseline climate, as reflected also by the quadratic effects already 

noted in Table 3. 

 

3.2. Climate and the national urban structure: 

So far, we have shown that when climatic conditions worsen this leads to more 

urbanisation, and we have shown the global reach of this phenomenon, once one allows 

                                                      
36 The effect of rainfall in SEA is positive (i.e. higher rainfall associated with more urbanisation), albeit not significant 
at conventional levels (p=0.23). This is something that we further explore in the next section, taking into account that 
millions of people are displaced each year by “sudden-onset” events (disasters), with floods and storms accounting for 
roughly two-thirds of this displacement globally, and these events are particularly concentrated in South East Asia 
(IDMC, 2018, as cited in Ober, 2019).  
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for a non-linear effect of climate. But, is this “climate-driven urbanisation” evident and 

similar across the whole urban structure? Or do changes in the climate lead to more 

urbanisation in specific urban areas, and therefore affect the national urban structure 

beyond the urban rate? These questions, to the best of our knowledge, have not been 

addressed in the literature to date, but are of increasing interest given that climate change 

is becoming a major factor displacing population, and given the relevance of the national 

urban structure in the process of development of countries.37 

We test the effects of climatic conditions on the urban structure using a similar 

specification as the one given in Equation (1), but changing the dependent variable. 

Results are presented in Table 4. In columns 1 and 2 we distinguish urbanisation in large 

cities (i.e., over one million inhabitants) vs. urbanisation in small and medium-sized cities 

(i.e., below one million).38 In columns 3 and 4 we distinguish urbanisation taking place in 

the largest city vs. urbanisation in the rest of the urban areas of the country. In all cases, 

we see a similar pattern as in Table 3 where we considered the overall urban rate: i.e. a U-

shaped association between both rainfall and temperature, and urbanisation. These 

results imply that the urbanisation-increasing effect of worsening climatic conditions is 

evident in cities above one million inhabitants as well as in cities below one million, and 

in the largest city as well as in the rest of the urban hierarchy. However, comparing the 

magnitude of the coefficients across the four columns, we also find significant 

differences between urbanisation in large cites (column 1) vs urbanisation in smaller 

cities (column 2), and between urbanisation in the largest city (column 3) vs urbanisation 

elsewhere (column 4). For rainfall, worsening climatic conditions (a decrease in rainfall 

when rainfall is already low) increases urbanisation in large cities more than urbanisation 

                                                      
37 Climatic factors are of course not the only source of urbanization and changes in the national urban structure. A 
variety of other factors also play a role, including economic development, political characteristics of countries (Ades 
and Glaeser, 1995; Davis and Henderson, 2003; Henderson and Wang, 2007; Candau and Gbandi, 2019), trade, 
manufacturing development (Krugman and Livas, 1996), and (historical) infrastructure (Bonfatti and Poehlhekke, 
2016), to mention some. 
38 We focus on countries with at least one urban agglomeration over one million inhabitants in 2018 (following the 
definition in the World Development Indicators). This mainly excludes very small countries. 
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in small and medium-sized cities. By contrast, for temperatures, we see substantially 

larger effects on urbanisation in small and medium-sized cities compared with 

urbanisation in large cities (with urbanisation in small and medium-sized cities 

responding almost 5 times more to high temperatures than urbanisation in large cities). A 

similar pattern of findings emerges with the distinction between the largest city and the 

rest of the urban hierarchy in columns 3 and 4; urbanisation in the largest city responds 

most strongly to changes in annual rainfall, while it is urbanisation taking place outside 

the largest city which responds more to changes in annual temperature.39 

 

Table 4: Other dimensions of the national urban structure 

  (1)  (2)  (3)  (4)  (5)  

Dependent 
variable: 

log(urb>1m) log(urb<1m) 
log(urb largest 

city) 
log(urb outside 

largest city) 
log(primacy) 

      ave_rain -0.9483** -0.2995 -1.0851*** -0.5537** -0.3357** 

 
(0.2996) (0.2097) (0.2832) (0.2366) (0.1656) 

ave_rain2 1.68e-04** 1.08e-04** 1.94e-04*** 1.75e-04*** 5.62e-05 

 
(8.11e-05) (5.47e-05) (7.01e-05) (5.69e-05) (4.47e-05) 

ave_temp -0.1794*** -0.2681*** -0.1892*** -0.3070*** 0.0611** 

 
(0.0583) (0.0507) (0.0549) (0.0465) (0.0309) 

ave_temp2 0.0038** 0.0105*** 0.0036** 0.0117*** -0.0023** 

 
(0.0015) (0.0024) (0.0016) (0.0020) (0.0009) 

            

Year FE YES YES YES YES YES 

Country FE YES YES YES YES YES 

Observations 1221 1221 1601 1595 1541 
No. of countries 111 111 146 146 146 
R-Square (within) 0.476 0.505 0.412 0.503 0.053 

Note: Column 5 restricts the sample to countries of more than a million inhabitants. Robust standard errors 
(clustered by country) in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 

 

The results in Table 4 show that deteriorating climatic conditions can fuel 

urbanisation across the whole national urban structure, but different components may 

react to different changes in the climate. This means that weather variation can alter the 

national urban structure, including the pattern of urban concentration. In column 5 of 

Table 4, we explore the connection between our climatic variables and primacy rates, as a 

common measure of urban concentration. Results suggest that low rainfall increases 

                                                      
39 Figure E.1 in Appendix E shows marginal plots for average annual rainfall and temperatures for urbanisation in large 
cities and urbanisation in small and medium-sized cities. 
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primacy rates. For temperatures, the results suggest that when temperatures become too 

high primacy rates decrease. The primacy-reducing effect of higher temperatures 

happens for mean temperatures above 20 degree Celsius (as shown in Figure E.2 in 

Appendix E). This level of mean temperatures is characteristic of most countries in SSA, 

but also of other hot regions like the MENA region and SEA. Many countries in these 

regions are characterised by declining primacy rates (even when the size of the largest city 

continues to grow, as described in Section 2.2). 

The contrasting findings for rainfall and temperature, observed in Table 4, may 

partly reflect regional differences, particularly related to different baseline climates across 

regions, as suggested by the regional heterogeneity analysis presented in Appendix Table 

E.1. While the effects of higher temperatures appear consistent across regions, this is not 

the case for rainfall; we find that low rainfall is associated with urbanisation that is more 

strongly oriented towards larger (largest) cities in SSA, whereas in SEA, higher rainfall is 

associated with more urbanisation in small-to-medium (non-largest) cities. While the 

(negative) association between rainfall anomalies and urbanization has been observed 

previously for SSA (e.g. Barrios et al. 2006), the observation of a positive association 

between rainfall anomalies and urbanisation for SEA is novel.40 These findings are also 

consistent with the idea that slow onset changes in climate (e.g. increasing aridity in SSA) 

may lead to more permanent (and more long-distance) movement of people, whereas 

sudden-onset events (such as floods in SEA), tend to be associated with temporary 

displacement of population and short-term movements to nearby cities (see e.g. Bohra 

Mishra et al., 2014, for micro-evidence from Indonesia; also Mallick, 2014, for micro 

evidence from Bangladesh).   

                                                      
40 If higher temperatures have a bigger effect on small cities, then higher temperatures reduce primacy. Similarly, if low 
rainfall in SSA has a bigger effect on urbanisation of big cities, this increases primacy (a negative relation between 
rainfall and primacy). At the same time, if high rainfall in SEA increases population in small cities (more than in big 
cities), this would reduce primacy (again a negative relation between rainfall and primacy). Thus the regional 
heterogeneity analysis presented here also helps us to understand the findings on primacy presented in Table 4, 
Column 5.  
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3.3. Climate and the size and spatial structure of the largest city: 

Finally, in this section, we study the potential impact of variations in climatic 

conditions on the size, density and spatial structure of the largest city in each country. As 

discussed previously, the size, density and spatial structure of cities has been shown to 

play a role in the economic performance and quality of life of urban dwellers. We do not 

aim at exploring in depth the growth of cities (something out of our scope here); the aim 

of this subsection is merely to show that, as with national-wide variables, changes in the 

climate can also have an impact in the growth of cities – something, to the best of our 

knowledge, not done in the literature to date using a global sample of cities. 

 

Climate and the growth of cities 

Following the same empirical strategy adopted in Sections 3.1 and 3.2, we estimate the 

effect of variation in climatic conditions on the size of (large) cities, as given by Equation 

(2): 

 

                                           (2) 

 

where CitySizeit is either average city size, total population living in the largest city or 

density (all in logs) of country i in period t, and the empirical set-up is otherwise similar 

to Equation (1). As before, we use 5-year periods, and consider nonlinearities in the 

climate-city size relationship. Results are presented in Table 5.  

In column 1 of Table 5 we look at average city size, while in columns 2 and 3 we 

look at the size of the largest city (with column 2 using WUP data and column 3 using 
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GHSL data). Results show a similar pattern as observed in Tables 3 and 4: for low levels 

of rainfall, a reduction in rainfall leads to faster city growth. For temperature, when 

temperatures are low, an increase in mean temperature leads to slower city growth, but 

when temperatures are already high, higher temperature leads to faster city growth 

(Figure F.1 in Appendix F shows marginal plots for coefficients in column 2 of Table 5). 

Finally, in column 4, we look at density. The estimated coefficients suggest that the 

density of the largest city increases as temperatures get higher. In short, worsening 

climatic conditions lead to larger and denser cities, in line with previous findings in the 

literature (e.g. Henderson et al., 2017, for SSA).  

 

Table 5: Results at the city level, looking at size and density  

  (1)   (2)   (3)   (4)   

Dependent variable: log(avecitysize) log(pop) log(pop) log(density) 

          
ave_rain -1.3606*** -1.4777*** -0.0022** -0.0016* 

 (0.3624) (0.4247) (0.0009) (0.0009) 
ave_rain2 2.22e-04*** 2.52e-04*** 3.62e-07* -2.95e-07 

 (7.50e-05) (8.68e-05) (2.01e-07) (2.01e-07) 
ave_temp -0.7234*** -0.7028*** -0.5541*** -0.3840*** 

 (0.1016) (0.1053) (0.1348) (0.1216) 
ave_temp2 0.0198*** 0.0196*** 0.0136*** 0.0052* 

 (0.0027) (0.0027) (0.0032) (0.0031) 
          

Year FE YES YES YES YES 

Country FE YES YES YES YES 

Observations 1937 1937 584 584 
No. of countries 149 149 146 146 
R-Square (within) 0.788 0.763 0.496 0.093 

Note: Columns 1 and 2 use WUP data for population. Columns 3 and 4 use GHSL data. Robust 
standard errors (clustered by city) in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 

 

 

In Table F.1 and F.2 in Appendix F, we perform robustness tests on our results 

on the size and density of the largest cities. In Table F.1, we show that results hold to 

restricting weather variation to the proximity of the city (i.e., 500km radius around the 

city), weighting by distance and population, and excluding urban grid-cells. In Table F.2, 
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we show that results are also robust to different clustering of the residuals as well as the 

introduction of city-specific linear trends.41   

 

Climate, city growth and the evolution of the spatial structure of cities 

As suggested by results in Table 5, climatic conditions play a significant role in the 

evolution of the size and density of the largest city. Depending on where people settle as 

they arrive in cities, this climate-driven city growth might also affect the spatial structure of 

the city. Specifically, we might ask, is climate-driven city growth making cities more or 

less monocentric? More or less spatially unequal? Our detailed data allows us to answer 

these questions. To do so, we run a two-step estimation. In the first step, we predict city 

population size, for our sample of largest cities, using our climatic variables. In a second 

step, we use this prediction to estimate its impact on the city’s spatial structure, as 

described in Equation (3):  

 

                                
                 (3) 

 

where CityStructureit is alternatively our measure of monocentricity (i.e., Moran’s I) or our 

measure for spatial inequality (i.e., Gini coefficient), both based on our night lights data. 

We also consider a ratio of low to high-density areas, benefiting from the detailed 

information in the GHSL data.           
    is the prediction from the first-step using our 

climate variables. We include country-fixed effects, so the identification comes from the 

within-city evolution over time. Consequently, the estimated coefficient for    captures 

how the spatial structure of the city changes as the city grows in response to climatic 

drivers. Results are presented in Table 6.42 

                                                      
41 Results are also robust to controlling for the evolution of the urban rate, and hold when we look separately at 
developed and developing countries, although the coefficients for rainfall lose significance when looking at developed 
countries only. 
42 See Table F.3 in Appendix F for first-step results. 
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Table 6: Results at the city level, looking at the spatial structure  

 (1) (2) (3) (4) (5) 

Dependent variable: Light_Moran’s I Light_Moran’s I Light_Gini Light_Gini Low-to-high-
density share 

      

          -0.1121*** -0.0635*** -0.8057*** -0.5883*** -0.1137*** 

 (0.0203) (0.0236) (0.0977) (0.1289) (0.0375) 
            

Year FE YES YES YES YES YES 

City FE YES YES YES YES YES 

Observations 886 436 886 436 540 
No. of countries 148 146 148 146 145 
R-Square  0.391 0.442 0.105 0.103 0.121 
F test on exc inst 46.18*** 12.21*** 46.18*** 12.21*** 104.22*** 

Note: Light_Moran’s I, Light_Gini and CitySize all in logs. CitySize is estimated using ave_rainfall and 
ave_temperatures. Columns 1 and 3 use WUP data for population. Columns 2, 4 and 5 use GHSL data. Robust 
standard errors (clustered by city) in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 

 

In columns 1 and 2 of Table 6 we look at monocentricity, while in columns 3 and 

4 we look at spatial inequality. Columns 1 and 3 use the WUP data, while columns 2 and 

4 use GHSL data, to measure city population. Results show that climate-driven city 

growth is associated with less monocentric (i.e., more fragmented) and less spatially 

unequal urban structures. Finally, in column 5, we find that climate-driven growth also 

leads to a lower share of low-density areas; the proportion of high-density areas increase 

as cities grow in response to worsening climatic conditions. In other words, our results 

suggest that as (large) cities grow in response to worsening climatic conditions nation-

wide, their spatial structure changes, and they become more fragmented, with high-

density areas becoming more predominant. These results are robust to our different 

variables capturing weather variation in the proximity of the city - i.e., estimating CitySize 

using weather variation in a 500km-radius around the city, weighting by distance and 

population, and excluding urban grid-cells (see Table F.4 in Appendix F). 

To further illustrate the relation between climate change and urban structure, in 

Appendix G, we present a comparative case study of two Sub-Saharan African countries, 

Nigeria and Ghana, and one Asian country, Bangladesh. In line with our empirical 
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analysis, we see, inter alia, that the relative growth of larger and smaller cities depends 

both on climatic factors and the initial urban hierarchy. Also in line with our global 

results, we see that fast city growth in large cities translates into increasing density and 

spatial fragmentation (as for instance seen in Dhaka).  

 

4. Discussion and Conclusions  

In this paper, we study the effects of changes in the climate on the spatial 

distribution of population and economic activity within countries. To do so, we 

construct a unique dataset that combines aggregate census data, satellite data on built-up 

areas and data on light intensity at night, combined with global climatic data. Whereas 

most of the existing literature on climate and urbanisation has tended to study the effects 

for individual countries or regions, we have taken a global perspective, with over half a 

century of data for close to 150 countries, enabling us to show the widespread nature of 

the effects, but also to uncover important heterogeneities in effects. 

We find that deteriorating climatic conditions (i.e., higher temperatures in places 

that are already hot, and lower rainfall in places where it is already scarce) are associated 

with more urbanisation. While the existing literature has already established that weather 

variation and extreme weather events can contribute to urbanisation, for individual 

countries, and regions, we show that this finding holds for a global sample, once the 

non-linear effects of climate are taken into account. The effects of climate on 

urbanisation are also observed across the whole national urban structure (i.e., increasing 

urbanisation in both smaller and larger cities, and even in the largest city of the country). 

Looking at heterogeneities by country characteristics, we find that the effects on 
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urbanisation depend importantly on baseline climate, and are strongest for developing 

countries, and where the agricultural share is higher.43  

We also find that weather variation can alter the national urban structure, 

including the pattern of urban concentration, as well as the size and spatial structure of 

(the largest) cities. According to our results, in the face of high mean temperatures 

urbanisation in cities of less than a million inhabitants reacts more than urbanisation in 

cities of more than a million, and primacy rates fall. This suggests that in reaction to 

higher temperatures, people seem to move more to small and medium-sized cities (or 

secondary cities) than to large ones (or the primate city). We interpret these results as 

suggesting that global warming may be a factor contributing at the same time to rapid 

urbanisation, and increasing city size, but also to the process of urban “de-

concentration” that many developing countries, mainly low-income countries in SSA, 

have been experiencing in the last decades (where secondary cities are growing faster 

than the largest city).  

At the city level, something similar occurs: we find that worsening climatic 

conditions, by pushing population from rural to urban areas, increase city size and 

density. But this climate-driven growth also seems to foster fragmentation within the 

city. This suggests that as people arrive in large cities they are likely to locate in poorer 

areas of the city, in many cases slums. To the extent that climate-induced rural-to-urban 

migrants face challenges in accessing the most desirable neighbourhoods within cities, 

due to accommodation costs or other barriers, they are more likely to settle on the urban 

                                                      
43 The global non-linear relationship between climate and urbanisation, which we identify for our full sample, is 
predominantly driven by effects in developing countries. However, the results of an additional test (suggested by Burke 
et al. 2015), where income interacted with temperature and rainfall is included alongside the nonlinear climate 
variables, shows that the non-linear global effects we observe are not just the result of different marginal effects for 
rich (cold) and poor (hot) countries. The test also shows that the non-linear relationship observed is not entirely 
attenuated by higher income. Furthermore, the city-level results for the effects of temperature on city population and 
density in particular, appear to hold across developing and developed country sub-samples, suggesting that the 
observed effects of climate on urbanisation (particularly in the largest cities) are unlikely to be fully offset (or adapted 
away) by rising incomes alone. These additional results are available on request.  
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fringe or in informal settlements, leading to increased urban fragmentation, which is 

what we observe.44  

Our findings have important policy implications, especially for evaluating future 

climate change, as well as for policies regarding climate and disaster resilience. Our 

results indicate that climate change is likely to accelerate urbanisation in many locations 

worldwide, particularly in developing countries, as temperatures rise and rainfall is 

expected to become more concentrated (leading to more frequent extremes of both 

drought and flood). While some colder (typically richer) countries may experience less 

climate-induced urbanisation as temperatures rise, these effects are likely to be 

outweighed by effects in (hotter) developing countries.45  

 Our findings also indicate that climate change should be expected to alter the 

character of urbanisation, with potentially important implications for spatial development 

patterns and ultimately welfare. In particular, climate change will aggravate the current 

urban challenges that developing countries face (as highlighted by the UN’s Sustainable 

Development Goals Agenda), with more people living in larger and more fragmented 

cities. 

Our results call for further research, along a number of important dimensions. 

We have taken a global view. Research at a more disaggregated level, looking at what 

happens in specific countries and cities, can add further insights on the impacts of 

climate change on the location of population and economic activity. We present a range 

of heterogeneity analysis, which provides some suggestive evidence on the differing 

nature of climate-induced urbanisation across world regions. These differences appear to 

be related not just to differences in baseline climate but also to structural differences in 

                                                      
44 For a discussion on rural migrants settling in slums, see Marx et al. (2013). 
45 This expectation is partly informed by the differences in our findings across developed and developing countries, but 
also by the apparently asymmetric effects of warming on extremes of hot and cold weather. As noted in Appendix B, 
warming experienced over the 20th century has already had a notable effect on the frequency of more extreme weather 
observations, with a more pronounced increase in the frequency of relatively hot years (compared with the decrease in 
the frequency of relatively cold years). 
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urbanisation patterns by region, including differences in the initial distribution of cities, 

as well as differences in response to slow-onset (e.g. droughts) vs sudden-onset climate 

events (e.g. floods). At the micro-level, more needs be known about households’ 

response to weather variation, considering their vulnerability and adaptive capacity, 

including the option of rural-urban migration, and the trade-offs they face in terms of 

migration costs (distance) vs relative attractiveness of the destination, as well as potential 

difficulties in accessing the most desirable neighbourhoods within cities.   

In a world threatened by climate change, a better understanding of how location 

decisions, as well as the overall spatial distribution of population and economic activity, 

react to global warming will be of utmost importance in informing policy-formation 

across a range of crucial public policy arenas, including spatial and development planning 

and the challenges inherent in managing increasing flows of population into cities.  
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APPENDICES: 
[Can be considered as Online Supplementary Material only]  
 
 
Appendix A: Data overview [Corresponding to Section 2 in the paper] 
 
 

Figure A.1: Map of countries included in the data set according the world 
 regions 
 

 
 

Note: Countries in grey are not included. All other countries are in different tones of blue, with 
each tone representing a different world region: The regions are: North America, Latin American 
& the Caribbean, Europe, North Africa & Middle East, Sub-Saharan Africa, Central Asia, South 
and East Asia, and Oceania. 
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Table A.1: Overview of all variables and data sources 
Variable Time Span Source 

I: Country-level variables 

I.1: Climatic variables 

Average temperature 1901-2015 World Bank Climate Change Knowledge Portal (CCKP), 
country averages based on UEA’s CRU-TS data  

Average rainfall 1901-2015 World Bank Climate Change Knowledge Portal (CCKP), 
country averages based on UEA’s CRU-TS data  

Temperature anomalies 1901-2015 World Bank Climate Change Knowledge Portal (CCKP), 
country averages based on UEA’s CRU-TS data  

Rainfall anomalies 1901-2015 World Bank Climate Change Knowledge Portal (CCKP), 
country averages based on UEA’s CRU-TS data  

Decennial temperature changes 1901-2015 World Bank Climate Change Knowledge Portal (CCKP), 
country averages based on UEA’s CRU-TS data  

Decennial rainfall changes 1901-2015 World Bank Climate Change Knowledge Portal (CCKP), 
country averages based on UEA’s CRU-TS data  

I.2: Urban variables 

Urban rate 1960-2010 World Development Indicators (World Bank) 

Urban pop in cities >1 million 1960-2010 World Development Indicators (World Bank) 

Urban pop in cities <1 million 1960-2010 Constructed using World Development Indicators 
(World Bank) 

Primacy rate 1960-2010 World Development Indicators (World Bank) 

Number of cities per unit area 1960 Constructed using World Development Indicators and 
World Urbanisation Prospects 

Average city size 1950-2015 Constructed using World Urbanization Prospects 
(United Nations) 

I.3: Other country-level variables 

GDP per capita 1960-2010 World Development Indicators (World Bank) 

Total population 1960-2010 World Development Indicators (World Bank) 

Agricultural Share in GDP 1965-2010 World Development Indicators (World Bank) 

II: City-level variables (for primary cities) 

Population in WUP 1950-2015 World Urbanization Prospects (United Nations) 

Lights per Capita 1992-2013 Constructed using Satellite Data of Night-time lights, 
top-coding-corrected 

Spatial Gini coefficient in light  1992-2013 Constructed using Satellite Data of Night-time lights, 
top-coding-corrected 

Moran’s I: spatial 
autocorrelation 

1992-2013 Constructed using Satellite Data of Night-time lights, 
top-coding-corrected  

Population in GHSL 1975, 1990, 
2000, 2015 

Global Human Settlement Layers  

Area 1975, 1990, 
2000, 2015 

Global Human Settlement Layers  

Population density 1975, 1990, 
2000, 2015 

Constructed using Global Human Settlement Layers  

Share of low vs. high density 1975, 1990, 
2000, 2015 

Constructed using Global Human Settlement Layers 
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Appendix B: Climate data [Corresponding to Section 2.1 in the main text] 

 

Climate data variable definitions:  

 

Our climatic variables are based on historical weather data, including temperature 

and rainfall observations, and are derived from monthly global gridded data, which have 

been aggregated to country means. The country-level datasets that we use were obtained 

from the World Bank’s Climate Change Knowledge Portal (CCKP).46 These data are 

simple area-weighted country means, derived from the University of East Anglia’s 

Climate Research Unit (CRU) time-series (TS) dataset of high resolution gridded 

monthly climatic observations (see Harris et al. 2014). Based on these data, we construct 

three distinct sets of climatic variables, as follows:  

 

Averages: 

The variables ave_rain and ave_temp measure mean annual average rainfall (in meters per 

year) and temperatures (in degree Celsius), at the national level, over 5-year time periods. 

Given that our regressions include country fixed effects, when we include ave_rain or 

ave_temp as explanatory variables, estimation is based on the temporal variation in these 

measures for each country, i.e. the variation relative to that country’s long-run average 

climate. Average annual temperatures and rainfall have been used in global analyses of 

the economic effects of weather variation for example in Dell et al. (2012) and Burke et 

al. (2015), who also implement a quadratic specification of the weather variables, similar 

to the one we use here. 

 

Anomalies: 

We also construct measures of rainfall and temperature anomalies, based on deviations of 

annual observations from their long run means, divided by the long run standard 

deviation of that variable, for each country (as used in e.g. Barrios et al., 2006, and 

Hendrix and Salehyan, 2012). Formally, rainfall anomalies for country i in year t are 

defined as: 

rain_anomit = (ann_rainit – mean_raini ) / sd_raini , 

 

                                                      
46 Available from https://climateknowledgeportal.worldbank.org/download-data (last accessed on 18 June 2020).  

https://climateknowledgeportal.worldbank.org/download-data
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where mean_raini and sd_raini are defined over the entire available dataset from 1901-

2015. Temperature anomalies are defined similarly. These annual anomalies are then 

aggregated to 5-year periods to match with the urban data we are using, by taking simple 

5-year means of the annual anomaly measures. The anomaly variables are standardised, 

with mean zero. However, the data in our sample reflect anomalies over the period 1950-

2015 relative to long run trends (1901-2015). For temperature anomalies, in particular, 

the mean value in our sample is a bit above zero, reflecting warming over the latter part 

of the 20th century. 

 

Decennial changes: 

Finally, we construct measures of decennial changes over time in rainfall and temperature, 

measured as the 10-year, gradual change in average temperature or average rainfall, where 

averages are defined over 3-year periods at the beginning and end of each 10-year 

interval (as used in Peri and Sasahara, 2019). Formally, we define 

temp_dec_chit as (t-2 t ann_tempit/3) – (t-12t-10 ann_tempit/3) 

The equivalent variable for rainfall, rain_dec_chit, is defined similarly. To match with our 5-

year panel, we simply take the observed values of temp_dec_ch and rain_dec_ch at each fifth 

year, starting in 1950.  

 

 Moisture index: 

We follow Henderson et al. (2017) and calculate a moisture index variable that captures the 

interaction of rainfall and temperature that is relevant for plant growth (and thus for 

agricultural productivity). This measure involves dividing rainfall observations by 

potential evapotranspiration (a non-linear function of temperature), such that rainfall 

observations are essentially penalised for places that are hotter, reflecting the effects of 

higher temperatures on moisture availability for plant growth. Potential 

evapotranspiration (PET) is calculated for monthly data, then aggregated to 5-year 

periods to match with our data.  The formula for monthly PET (as used in Henderson et 

al., 2017), is 

 

      
  

  
  

 

  
  

       

   
    

 
            

                      
         

 ’ 
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where Ti is the average monthly temperature in degrees Celsius, Ni is the number of days 

in the month, Li is day length at the middle of the month,                 

                                , and the heat index       
   

  

 
      . 

Each of our three sets of climatic variables (plus the moisture index) thus 

captures distinct aspects of weather variation; for the averages, variation in the levels of 

rainfall and temperature; for anomalies, variation that is large relative to typical variation 

for that country; and for gradual changes, gradual trends in rainfall or temperature over 

medium-term time scales. The moisture index captures interactions between rainfall and 

temperature that are likely to matter for agricultural productivity. In all cases, our weather 

variables are defined and included in our regressions such that we are using the variation 

in weather in the previous 5-year period (or in the case of the decennial change variables, 

over the preceding 10-year period) to explain variation in the outcomes of interest. 

Specifically, our rainfall observation for 1990 is defined as the average over 1985-1989.  

 

Weighting by population and city-specific versions  

As noted in Section 2.1 of the main text, for robustness we also construct a global 

gridded weather dataset, merged with gridded population data, and urban area identifiers, 

from which we derive a number of alternative aggregations of the weather data. The 

gridded weather data we use for this purpose are from the CRU TS version 4.03 dataset 

from the University of East Anglia.47 This is a gridded dataset of historical weather 

observations for 1901-2018, on a global 0.5-degree grid. These weather data were merged 

with gridded population data (also for a global 0.5-degree grid) from the Global 

Population of the World v4 dataset.48 Urban gridcells in the data were identified using the 

urban area polygons from the Global Rural Urban Mapping Project (GRUMP) v1 

dataset, which is based on urban extents circa 1995.49 In practice, we identify a gridcell as 

                                                      
47 The data are available from https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.03/ (last accessed June 2020).  
48 The data are available from https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-adjusted-to-2015-
unwpp-country-totals-rev11/data-download (last accessed June 2020). We use the version of the population data 
adjusted to match UN country totals, and we take population estimates for the earliest available year in the data (2000).  
49 These data are available from https://sedac.ciesin.columbia.edu/data/collection/grump-v1/sets/browse (last 
accessed June 2020).  

https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.03/
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-adjusted-to-2015-unwpp-country-totals-rev11/data-download
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-adjusted-to-2015-unwpp-country-totals-rev11/data-download
https://sedac.ciesin.columbia.edu/data/collection/grump-v1/sets/browse
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“urban” if the centroid of at least one urban area from the GRUMP dataset falls within 

that grid-cell.  

For the city-level analysis reported in Section 3.3, we further construct city-

specific versions of our climate variables for robustness, based on weather variation in 

the proximity of the city, and based on national level weather variation weighted by 

distance to the city. Specifically, we take coordinates of the centroid of each city in our 

data (the primary city, or largest urban agglomeration, in each country), from the UN 

WUP dataset, and calculate: a simple area-weighted aggregation of weather observations 

for gridcells within 500km of the city (and within national boundaries); population and 

distance-weighted aggregations of all gridcells in a country; and finally, population and 

distance-weighted aggregations of the rural (non-urban) gridcells only. Summary statistics 

for each of these alternative ways of aggregating the climate data, at both the national 

and city level, for the full sample, and by income group, are included in Table B.1.  

 

Figure B.1: Map showing illustration of global gridded climate data 
 

 
Note: The map shows average temperature at each gridcell in the year 2015, with lower temperatures in blue and higher 
temperatures in purple/pink. Each dot on the map represents one 0.5 degree gridcell. As the legend shows, the local 
average temperature in 2015 for gridcells ranges from -27 to +31 degrees C.  
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Table B.1: Summary stats for alternative climate variables 

 World Low Middle High 

Panel A: National level climate variables     
Ave Rain 1.03 1.10 1.08 0.87 
(St.Dev.) (0.74) (0.66) (0.82) (0.65) 
Ave Temp 18.18 23.05 18.81 13.67 
(St.Dev.) (8.44) (5.52) (7.65) (9.19) 
Ave Rain (pop-weights) 1.09 1.20 1.04 0.85 
(St.Dev.) (0.72) (0.61) (0.72) (0.53) 
Ave Temp (pop-weights) 18.34 23.38 18.51 14.03 
(St.Dev.) (7.59) (4.35) (7.24) (7.29) 
Ave Rain (pop-weights, rural only) 1.10 1.22 1.04 0.84 
(St.Dev.) (0.71) (0.61) (0.71) (0.53) 
Ave Temp (pop-weights, rural only) 18.30 23.35 18.49 14.00 
(St.Dev.) (7.55) (4.26) (7.22) (7.25) 
Moisture 0.86 0.79 0.86 0.88 
(St.Dev.) (0.54) (0.45) (0.56) (0.59) 
     
Panel B: City level climate variables      
Ave rain (pop-weights & dist-weights) 1.02 1.23 1.02 0.81 
(St.Dev.) (0.68) (0.64) (0.72) (0.53) 
Ave Temp (pop-weights & dist-weights) 18.20 23.28 18.30 14.22 
(St.Dev.) (7.50) (4.73) (7.39) (6.99) 
Ave Rain (rural only) 1.02 1.23 1.01 0.81 
(St.Dev.) (0.68) (0.65) (0.72) (0.53) 
Ave Temp (rural only) 18.19 23.26 18.31 14.17 
(St.Dev.) (7.52) (4.74) (7.41) (6.98) 
Ave Rain (<500km) 1.05 1.15 1.09 0.87 
(St.Dev.) (0.71) (0.63) (0.80) (0.57) 
Ave Temp (<500km) 18.11 23.23 18.61 13.54 
(St.Dev.) (7.96) (5.36) (7.52) (7.65) 
     

Note: The first two variables (first four rows) in the table are the (area weighted) country level average rainfall and 
temperature variables used in our baseline specifications, included here for comparison. The remaining rows are 
alternative ways of aggregating gridded climate data to the national level, as described in the text. The “rural only” 
variables are population weighted (and distance weighted in the case of the city-level variables), but only aggregating 
across gridcells that are non-urban (as per description in the text). Rainfall is measured in meters per year, and 
temperature in degrees Celsius.  
 

 
Table B.2 Summary stats for climate data, by world region  
 

 
N Am LATAM Europe Oceania SSA MENA SE Asia C Asia 

Panel A: Long-run averages (1950-2015) 

Ave Rain 0.56 1.74 0.79 1.75 1.04 0.24 1.75 0.40 

 (0.10) (0.68) (0.24) (1.07) (0.58) (0.23) (0.71) (0.22) 

Ave Temp 0.27 22.35 8.29 18.85 24.82 22.05 20.74 7.82 

 (6.98) (4.16) (4.03) (6.55) (2.79) (4.40) (7.19) (4.91) 

Rain Anom 0.35 0.08 0.08 0.10 0.00 -0.06 0.01 0.12 

 (0.61) (0.52) (0.46) (0.47) (0.65) (0.54) (0.54) (0.48) 

Temp Anom 0.27 0.26 0.24 0.33 0.16 0.34 0.27 0.30 

 (0.72) (0.74) (0.70) (0.68) (0.88) (0.78) (0.82) (0.70) 

Rain_dec_ch 6.52 0.26 9.11 1.37 -1.16 -4.67 -2.99 2.25 

 (22.29) (233.70) (90.84) (171.37) (104.16) (51.06) (197.95) (55.04) 

Temp_dec_ch 0.06 0.09 0.17 0.09 0.09 0.19 0.11 0.19 

 (0.48) (0.42) (0.67) (0.30) (0.39) (0.50) (0.29) (0.53) 
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Panel B: Long-run changes (1950-2015) 

Ave Rain 40.04 34.81 53.80 35.73 -67.81 -23.23 -24.36 5.93 

 (23.18) (174.97) (61.39) (43.39) (118.06) (32.08) (234.68) (17.91) 

Ave Temp 0.94 0.60 1.02 0.52 0.80 1.13 0.58 1.54 

 (0.35) (0.38) (0.37) (0.43) (0.39) (0.31) (0.29) (0.36) 

Rain Anom 1.34 0.14 0.53 0.30 -0.58 -0.52 -0.03 0.11 

 (0.04) (0.72) (0.47) (0.49) (0.88) (0.59) (0.82) (0.30) 

Temp Anom 1.44 1.40 1.32 1.18 1.83 1.77 1.39 1.86 

 (0.14) (0.81) (0.42) (0.92) (0.60) (0.47) (0.63) (0.28) 

Rain_dec_ch 10.54 -274.97 112.62 -21.35 44.12 -7.37 -44.23 -18.27 

 (22.87) (431.74) (151.66) (76.17) (130.02) (59.21) (358.62) (81.06) 

Temp_dec_ch 0.69 0.41 0.15 0.37 0.15 0.67 -0.06 1.22 

 (0.06) (0.32) (0.50) (0.47) (0.57) (0.48) (0.23) (0.32) 

Note: The table shows mean values for each variable by world region (panel A) and long-run changes in 
these variables by world region (panel B). Standard deviations in parentheses. Variables are as defined in 
the text and here in Appendix B. For ease of interpretation, average rainfall figures are in m per year and 
changes in rainfall are in mm. The regions are as defined in the map in Figure A.1 in Appendix A.  
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Figure B.2: Maps of changes in average rainfall and temperatures, 
 1950-2015 

 

 

Note: Top panel shows percentage changes in average annual rainfall and bottom panel shows changes in 
temperature (in degrees Celsius), by country, 1950-2015.  
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Figure B.3: Frequency of temperature anomalies  

  
Note: Rolling 30-year average of frequency of temperature anomalies >+1 (left panel) and >+2 (right 
panel) for the countries in our sample. Each observation in the figures represents the average over the 
preceding 30-year period, such that the first observation in the chart (at 1930) represents the average over 
1901-1930.  

 

 

Gradual warming has a pronounced effect on the frequency of extremes  

Focusing on temperature anomalies, we can observe the changing frequency of 

anomalies >+1, >+2, <-1, and <-2 in our data. Given how the anomaly variables are 

defined, a temperature anomaly >+1 represents a temperature observation (annual 

average temperature) more than 1 standard deviation above the mean for that country, 

and similarly for >+2, <-1, <-2. Warming on average might be expected to increase the 

frequency of higher than average temperatures, while decreasing the frequency of below 

average temperatures. Comparing the decade from 1901-1910, with the decade from 

2006-2015, the frequency of annual temperature anomalies >+1 showed a 34-fold 

increase, while the frequency of annual temperature anomalies >+2 showed a 256-fold 

increase. These increasing frequencies are illustrated in Figure B.2. Turning to below 

average temperatures, the frequency of temperature anomalies <-1 declined from 28% to 

0.7% over the same period, a 38-fold decline in frequency, while the frequency of 

temperature anomalies <-2 declined from 1.5% to 0.15%, a 10-fold decline in frequency. 

These figures underline how gradual warming can have dramatic effects on the frequency 

of more extreme observations, with a more pronounced increase in the frequency of 

relatively hot years. 
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Appendix C: Urban data [Corresponding to Section 2.2 in the main text] 
 
Table C.1: Summary statistics of urban variables by region 

 NA LATAM Europe Oceania SSA MENA SE Asia C Asia 

Panel A1: Country-level variables, latest available year (2010/15) 
Urb Rate 80.85 71.54 69.46 62.64 38.73 71.55 52.00 46.23 
 (0.12) (14.50) (12.76) (42.99) (17.00) (19.48) (28.69) (14.85) 
Urb > 1m 44.47 29.76 12.77 29.79 10.34 24.55 24.34 15.56 
 (0.04) (15.51) (10.48) (30.11) (10.66) (19.62) (29.91) (15.28) 
Urb < 1m 36.38 41.77 56.79 32.84 28.79 45.76 27.65 30.66 
 (0.15) (11.40) (12.29) (22.30) (17.55) (22.67) (21.90) (10.46) 
Urb Largest 11.05 25.14 15.99 17.22 15.57 20.98 23.83 19.36 
 (7.24) (14.01) (7.26) (12.33) (11.23) (15.32) (33.56) (11.89) 
Urb Non-Largest  69.80 46.39 53.48 45.42 23.13 49.65 28.16 26.86 
  (7.12) (14.67) (14.26) (32.74) (10.33) (15.89) (19.51) (9.46) 
Primacy 13.67 35.36 23.70 30.38 38.82 30.13 35.57 40.68 
 (8.93) (15.17) (11.59) (6.99) (14.39) (14.22) (29.86) (15.39) 
Ave. City Size 1385.51 1421.38 912.69 929.66 1249.04 1170.11 2023.18 1006.27 
 (55.71) (532.91) (436.69) (732.23) (640.83) (603.99) (1773.57) (374.97) 

Panel A2: Variables at the primary city level, latest available year (2010/15) 
Pop 12292.98 5156.71 2454.76 1964.29 2643.47 4004.15 10195.36 1678.50 
 (8909.89) (6289.51) (2995.25) (2002.46) (2938.37) (4640.83) (9876.78) (1183.89) 
Density 1553.51 2926.83 1712.27 2400.06 3245.51 3690.94 4816.76 3043.00 
 (498.15) (767.08) (375.42) (1503.95) (1193.65) (1695.00) (5428.30) (1262.67) 
High dens share 86.90 90.01 77.53 87.98 92.32 86.96 80.03 87.29 
 (6.79) (9.36) (16.91) (8.67) (13.20) (11.57) (21.98) (13.04) 
Light per capita 123.06 28.09 79.21 37.32 11.16 120.55 35.26 39.27 
 (5.34) (14.17) (60.43) (22.62) (10.81) (193.91) (34.65) (40.07) 
Gini 37.94 29.53 29.18 19.84 25.11 38.26 37.77 32.66 
 (11.37) (5.64) (8.34) (6.24) (6.99) (9.26) (9.36) (9.00) 
Moran's I 91.79 84.44 82.74 74.61 76.39 83.27 88.69 83.70 
 (4.13) (5.46) (8.54) (20.51) (9.36) (10.08) (6.65) (5.06) 

Panel B1: Country-level variables, long-run changes 
Urb Rate 11.33 27.53 18.80 8.89 24.68 28.49 20.18 7.94 
 (0.78) (9.09) (9.22) (1.52) (11.79) (15.21) (13.81) (10.81) 
Urb > 1m 10.06 10.73 2.58 5.54 6.70 5.62 7.74 4.30 
 (6.07) (10.18) (4.86) (5.32) (7.10) (10.53) (7.36) (7.95) 
Urb < 1m 1.27 16.80 16.62 3.35 18.21 22.59 12.44 3.64 
 (5.29 (6.96) (7.62) (5.22) (13.25) (14.69) (10.02) (4.23) 
Urb Largest 2.27 7.74 3.64 4.54 9.95 2.31 5.27 4.73 
 (5.89) (9.76) (4.25) (5.50) (7.31) (12.25) (4.94) (7.87) 
Urb Non-Largest  9.06 19.79 15.16 4.35 14.76 26.16 14.91 3.21 
  (5.11) (7.78) (7.15) (4.19) (7.76) (12.83) (11.99) (4.37) 
Primacy -0.15 -4.39 -1.79 0.50 0.22 -8.99 -3.17 2.92 
 (5.24) (10.06) (4.93) (7.78) (17.56) (16.30) (8.18) (7.88) 
Ave. City Size 972.91 1181.13 397.57 691.04 1191.08 1066.96 1668.06 778.59 
 (61.08) (540.30) (256.24) (497.40) (605.42) (550.14) (1370.84) (401.79) 

Panel B2: Variables at the primary city level, long-run changes 
Pop 5589.59 4259.25 1121.82 1408.68 2517.29 3613.72 8655.70 1314.08 
 (940.67) (5333.74) (1475.17) (1313.68) (2797.07) (4148.20) (8043.01) (1167.23) 
Density 332.71 -457.36 -779.74 447.47 -278.98 -910.32 -829.60 305.23 
 (288.98) (1857.97) (1973.44) (56.32) (1247.49) (4691.02) (5620.49) (1223.69) 
High dense share 13.27 -0.26 0.76 7.42 6.49 6.26 -3.24 1.42 
 (7.82) (10.15) (11.21) (3.63) (14.95) (19.73) (22.85) (20.68) 
Light p.c. -38.88 4.22 21.14 0.63 -0.76 -23.83 10.72 23.56 
 (66.54) (10.07) (37.25) (5.83) (7.45) (74.99) (19.73) (36.53) 
Gini -0.28 -5.37 -1.15 -4.69 -19.93 -2.58 -11.00 7.47 
 (5.40) (6.57) (10.43) (3.66) (10.69) (11.59) (11.03) (13.49) 
Moran's I -0.04 1.54 0.73 0.60 -3.71 -1.65 -0.97 6.60 
 (0.44) (4.94) (6.06) (5.64) (5.62) (3.48) (3.51) (7.72) 

Notes:  See Table 2 in the main text. The regional classifications are North America, Latin America and the Caribbean, 
Europe, Oceania, Sub-Saharan Africa, Middle East and Northern Africa, South East Asia, Central Asia. 
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Additional information on satellite data and measures for the spatial structure of 
cities 
  
 Top Coding Corrected Satellite Data:  

While satellite data of night-time lights have become established as a proxy for local 

economic activity in development economics in recent years (see Henderson et al., 2012, 

Donaldson and Storeygard, 2016), their use in urban economics has been limited. One 

drawback of the DMSP-OLS data, the most-often used time series data of night-time 

lights, is that they suffer from top-coding due to sensor saturation. This poses a problem 

for big cities in particular, because many pixels reach the end of the scale in terms of light 

intensity and appear equally bright. Inner-city differences as well as evolutions of 

luminosity over time cannot be measured appropriately. Bluhm and Krause (2018) 

propose a solution to the top-coding problem based on the observation that the world’s 

brightest lights follow a Pareto distribution. With a geo-referenced replacement 

algorithm, in which top-coded pixels get assigned value from the Pareto distribution, 

they provide a corrected worldwide night-time lights dataset. The corrected data have 

been applied to the analysis of city growth and inner-city differences by, inter alia, Bluhm 

and Krause (2018) as well as Düben and Krause (2019).  

  

 Moran’s I as Measure of Spatial Autocorrelation: 

Following Moran (2015), a measure of spatial autocorrelation indicates to what extent a 

unit is located close of others of similar or dissimilar value. In our city application it 

captures whether similar light intensities cluster together and thus indicates how the city 

is structured. We compute Moran’s I using the formula: 

   
 

  

                       

          

 

 

where in our case N is the number of pixels in the city,      are elements of the spatial 

weights matrix (for which we use the Euclidean inverse distance matrix),     is the sum 

of all the elements in the spatial weights matrix,    and    denote light intensities of pixels 

i and j, and    is the mean light intensity in the city.  

 Positive values of Moran's I indicate that pixels are surrounded by others of 

similar luminosity (positive autocorrelation), while negative values reflect a checkerboard 

pattern (negative autocorrelation). While light intensities within cities are known to be 

positively spatially correlated, there are clear differences in Moran’s I across cities. 
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Following Tsai (2015), this can be interpreted in terms of urban structure as follows: the 

higher Moran’s I, the more strongly monocentric the city is, while lower values are 

associated with polycentric structure, and ultimately fragmentation. 

 The two pictures below illustrate our use of the night-lights-based measure to 

capture the spatial structure of cities. Brighter values indicate higher light intensities (with 

respect to the city’s maximum luminosity) and represent satellite data from 2013: 

Teheran, with a Moran’s I of 0.9399, has a more monocentric city structure than Lagos 

(Moran’s I of 0.8349). In Teheran, the bright city centre can easily be discerned and 

luminosity decreases rather gradually towards the outskirts. This happens to a much 

lower degree in Lagos, suggesting more fragmentation. 

 

Figure C.1: Examples illustrating contrasting city structure  

 
 
Note: The colours represent the light intensity with respect to the city’s maximum luminosity, ranging from black 
(dark) over purple and red (medium-bright) to yellow (very bright). The extents of the maps are chosen for illustrative 
purposes, with the cut at the bottom of Lagos representing the sea. 
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Appendix D: Climate and Urbanisation – Margins plots, additional results using alternative 
measures of climate, robustness checks and heterogeneity analysis [Corresponding to 
Section 3.1]  

 
 

 
Figures D1: Margins plots for effects of rainfall and temperature on the urban rate, full 
sample 

  

Note: The figures show the marginal effect of variation in rainfall (in mm per year, left panel) and temperature (in 
degrees Celsius, right panel) on the log of the urban rate, for different levels of rainfall and temperature. The marginal 
effects in these figures correspond to the results reported in Column 1 of Table 3 in the main text, using the full panel of 
countries and time periods.  

 
 

Figures D2: Margins plots for effects of rainfall and temperature on the urban rate, 
developed countries 

  

Note: The figures show the marginal effect of variation in rainfall (in mm per year, left panel) and temperature (in 
degrees Celsius, right panel) on the log of the urban rate, for different levels of rainfall and temperature. The marginal 
effects in these figures correspond to the results reported in Column 2 of Table 3 in the main text, for developed 
countries only.  
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Figures D3: Margins plots for effects of rainfall and temperature on the urban rate, 
developing countries 

  

Note: The figures show the marginal effect of variation in rainfall (in mm per year, left panel) and temperature (in 
degrees Celsius, right panel) on the log of the urban rate, for different levels of rainfall and temperature. The marginal 
effects in these figures correspond to the results reported in Column 3 of Table 3 in the main text, for developing 
countries only.  

 
 
 
 

 

 
 
 

Table D.1: Replicating Table 3 (Main Results, Urban Rate) weighting by population 
 

 (1) full sample (2) developed (3)  developing (4) full sample  (5) developed (6) developing 

 log(urbrate) log(urbrate) log(urbrate) log(urbrate) log(urbrate) log(urbrate) 

       
ave_rain -0.5836*** -0.3865 -0.6875*** -0.5380*** -0.3553 -0.6372*** 
 (0.1809) (0.2562) (0.1968) (0.1794) (0.2556) (0.1949) 
ave_rain2 1.02e-04** 1.57e-04 1.31e-04** 9.03e-05* 1.37e-04 1.19e-04** 
 (5.06e-05) (1.48e-04) (5.31e-05) (5.15e-05) (1.49e-04) (5.39e-05) 
ave_temp -0.3357*** 0.0305 -0.3520*** -0.3436*** 0.0311*** -0.3640*** 
 (0.0526) (0.0248) (0.0899) (0.0528) (0.0251) (0.0906) 
ave_temp2 0.0096*** -0.0011 0.0093*** 0.0098*** -0.0010 0.0096*** 
 (0.0016) (0.0007) (0.0022) (0.0016) (0.0007) (0.0022) 
       

Year FE YES YES YES YES YES YES 
Country FE YES YES YES YES YES YES 

Observations 1573 385 1188 1573 385 1188 
No.Countries 143 35 108 143 35 108 
R-sq. (within) 0.94 0.91 0.94 0.93 0.91 0.93 

Note: Climatic variables are weighted by population. In Columns 1 to 3 rainfall and temperature observations are aggregated across all 
gridcells in a given country, weighted by population in each gridcell, while in columns 4 to 6 aggregation is across rural gridcells only. 
Robust standard errors (clustered by country) in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 
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Table D.2: Replicating Table 3 (Main Results, Urban Rate) using decennial changes and 
anomalies in temperature and rainfall  
 

 (1) full sample (2) developed (3)  developing (4) full sample (5) developed (6) developing 

 log(urbrate) log(urbrate) log(urbrate) log(urbrate) log(urbrate) log(urbrate) 

       
rain_dec_ch 0.0000 -0.0001 0.0000    
 (0.0000) (0.0000) (0.0000)    
temp_dec_ch 0.0050 0.0150*** 0.0363**    
 (0.0098) (0.0051) (0.0160)    
rain_anom    -0.0605*** -0.0178* -0.0380*** 
    (0.0126) (0.0098) (0.0128) 
temp_anom    0.0366** -0.0158 0.0512*** 
    (0.0169) (0.0141) (0.0181) 
       

Year FE YES YES YES YES YES YES 
Country FE YES YES YES YES YES YES 

Observations 1606 396 1210 1606 396 1210 
No. Countries 146 36 110 146 36 110 
R-sq. (within) 0.60 0.64 0.67 0.61 0.65 0.68 

Note: Robust standard errors (clustered by country) in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 

 
 
 

 
Table D.3: Robustness to different clustering of residuals, degree of openness and 
additional controls  
 

  (1) full sample (2) high openness  (3) low openness (4) full sample 

Dependent variable: log(urb) log(urb) log(urb) log(urb) 

     
ave_rain -0.6352* -0.6294*** -0.7667** -0.5396*** 

 -0.2863 -0.2106 -0.3173 (0.1590) 
ave_rain2 1.16e-04* 9.10e-05* 1.81e-04** 1.05e-04*** 

 -6.00e-05 -4.78e-05 -7.65e-05 (3.83e-05) 
ave_temp -0.2462*** -0.2218*** -0.2183* -0.1888*** 

 -0.0466 -0.0452 -0.1118 (0.0409) 
ave_temp2 0.0065*** 0.0044*** 0.0069*** 0.0052*** 

 -0.0012 -0.0014 -0.0025 (0.0011) 
          

Year FE YES YES YES YES 

Country FE YES YES YES YES 

Additional controls NO  NO NO  YES 

Observations 1606 949 657 1213 
No. of countries 146 126 103 143 
R-Square (within) 0.918 0.623 0.651 0.64 

Note: Robust standard errors (clustered by country in columns 2 to 4, and by country and time in column 1) in parentheses.  *** 
p<0.01, ** p<0.05, * p<0.1. Additional controls include the lag of GDP pc (in logs) and total population in the country. 
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Table D.4: Robustness to interdependencies in temperatures and rainfall, and regional and 
country-specific linear trends 
 

 (1) (2) (3) (4) (5) 

 log(urb) log(urb) log(urb) log(urb) log(urb) 

rain*temp -0.0426***     
 (0.0104)     
rain2*temp2 3.38e-7***     
 (9.35e-8)     
moisture  -0.0670***    
  (0.0208)    
moisture2  0.0015***    
  (0.0006)    
principal_comp   -0.7145*** -0.3336** -0.3436*** 
   (0.1715) (0.0774) (0.0606) 
principal_comp2   0.1913*** 0.0721*** 0.0648*** 
   (0.0469) (0.0259) (0.0186) 
      

Country FE YES YES YES YES YES 
Year FE YES YES YES NO NO 
Region-specific trends NO NO NO YES NO 
Country-specific trends NO NO NO NO YES 

Observations 1606 1581 1606 1606 1606 
No. of Countries 146 142 146 146 146 
R-squared  0.93 0.60 0.94 0.95 0.98 

Note: principal_comp is the principal component of rain and temp, which captures 66% of the joint variance, with an eigenvalues 
of 1.3. Robust standard errors (clustered by country) in parentheses.  *** p<0.01, ** p<0.05, * p<0.1.  

 
 
 
Table D.5: Heterogeneity of effects on urban rate, by differences in cities per unit area in 
1960 
 

 (1) full sample (2) 
developed 

(3)  
developing 

(4) low 
income 

(5) middle 
income 

(6) high 
income 

 log(urbrate) log(urbrate) log(urbrate) log(urbrate) log(urbrate) log(urbrate) 

       
rain_anom -0.0675*** -0.0176 -0.0521*** -0.0620** -0.0329 -0.0240 
 (0.0164) (0.0142) (0.0175) (0.0296) (0.0199) (0.0153) 
rain_anom*cities/area 0.2584 0.0002 0.3909 0.7482 -0.0308 0.0771 
 (0.1718) (0.0981) (0.2645) (0.5319) (0.3822) (0.0969) 
temp_anom 0.0592*** -0.0065 0.0453** -0.0222 0.0212 -0.0080 
 (0.0184) (0.0139) (0.0189) (0.0300) (0.0210) (0.0207) 
temp_anom*cities/are
a 

-0.4596** -0.0127 0.0555 2.6150** -0.0195 -0.1371 
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 (0.1834) (0.1264) (0.3086) (1.1259) (0.3414) (0.1342) 
       

Year FE YES YES YES YES YES YES 
Country FE YES YES YES YES YES YES 

Observations 1,573 385 1,188 327 755 458 
No. of Countries 143 35 108 44 103 60 
R-squared (within) 0.62 0.66 0.69 0.81 0.70 0.52 

Note: Robust standard errors (clustered by country) in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 
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Table D.6: Heterogeneity of effects on urban rate by baseline climate, agri-share, and world 
region 
 

 (1) relative to 
baseline 

temperatures 

(2) relative to 
baseline rainfall  

(3) by mean agri-
share 

(4) by regions 

 log(urbrate) log(urbrate) log(urbrate) log(urbrate) 

     
rain_anom -0.0082 -0.0814*** 0.0011 -0.0411*** 
 (0.0225) (0.0212) (0.0206) (0.0103) 
temp_anom -0.1521*** -0.0168 -0.1963*** -0.0803*** 
 (0.0367) (0.0262) (0.0281) (0.0225) 
rain_anom*temp1950 -0.0021    
 (0.0013)    
temp_anom*temp1950 0.0092***    
 (0.0016)    
rain_anom*rain1950  0.0163   
  (0.0159)   
temp_anom*rain1950  0.0380**   
  (0.0152)   
rain_anom*logagrishare_avg   -0.0160*  
   (0.0093)  
temp_anom*logagrishare_avg   0.0866***  
   (0.0102)  
rain_anom*SSA    -0.0755*** 
    (0.0257) 
rain_anom*South_East_Asia    0.0745** 
    (0.0295) 
rain_anom*LATAM    0.0353** 
    (0.0149) 
temp_anom*SSA    0.2106*** 
    (0.0307) 
temp_anom*South_East_Asia    0.1519*** 
    (0.0468) 
temp_anom*LATAM    0.0657** 
    (0.0254) 
     

Year FE YES YES YES YES 

Country FE YES YES YES YES 

Observations 1606 1606 1540 1606 
No. of Countries 146 146 140 146 
R-squared (within) 0.65 0.62 0.68 0.68 

Note: The excluded category in Column (4) is the combination of regions not displayed in the table (NA, Europe, MENA, Central 
Asia and Oceania). Robust standard errors (clustered by country) in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 
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Appendix E: Results for urban structure [Corresponding to Section 3.2 in the main paper] 
 
 
Figure E.1: Margins plots for effects of annual rainfall and temperature on urbanisation in 

large cities (top two panels) and small to medium sized cities (bottom two panels)  
 

Marginal plots urb>1m: 

    

Marginal plots urb<1m: 
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Figure E.2: Marginal plots primacy: 

   

 
 

Table E.1: Heterogeneity of effects on urban structure  

 

 (1) (2) (3) (4) 

Dependent variable: Logurb>1m Logurb<1m logurb_largest logurb_nolargest 

     
rain_anom -0.0370 -0.0380 -0.0355 -0.0369 
 (0.0154)** (0.0167)** (0.0151)** (0.0137)*** 
temp_anom -0.0871 -0.0402 -0.0730 -0.0576 
 (0.0334)** (0.0300) (0.0340)** (0.0273)** 
rain_anom*SSA -0.1349 -0.0110 -0.1786 -0.0243 
 (0.0423)*** (0.0306) (0.0480)*** (0.0290) 
rain_anom*SEA 0.0266 0.1356 0.0410 0.1536 
 (0.0379) (0.0536)** (0.0410) (0.0477)*** 
rain_anom*LATAM 0.0322 0.0433 0.0130 0.0446 
 (0.0232) (0.0221)* (0.0258) (0.0193)** 
temp_anom*SSA 0.2131 0.2062 0.1814 0.2626 
 (0.0479)*** (0.0492)*** (0.0412)*** (0.0475)*** 
temp_anom*SEA 0.1723 0.2924 0.1289 0.2679 
 (0.0615)*** (0.1001)*** (0.0609)** (0.0925)*** 
temp_anom*LATAM 0.0573 0.0623 0.0087 0.0767 
 (0.0416) (0.0294)** (0.0442) (0.0284)*** 
     

Year FE YES YES YES YES 
Country FE YES YES YES YES 

Observations 1221 1218 1633 1595 
No. of Countries 111 111 149 146 
R-squared (within) 0.548 0.527 0.483 0.525 

Note: The excluded category in each case is the combination of regions not displayed in the table (NA, Europe, MENA, Central Asia 
and Oceania). Robust standard errors (clustered by country) in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 
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Appendix F: Results for city size, density and structure  
[Corresponding to Section 3.3 in the main paper] 
 

Figure F.1: Marginal plots, city size: 

   
 

 
 

 
Table F.1: Robustness checks (1) to results in Table 5.  

 
  (1)   (2)   (3)   (4)   (5)   (6)   

Dependent variable: log(pop) log(pop) log(pop) log(density) log(density) log(density) 

       
ave_rain -0.8546 -0.2298 -0.4809 -0.0851 0.4465 0.1296 

 (1.2515) (1.1902) (1.0697) (1.2652) (1.2096) (1.0653) 
ave_rain2 5.35e-05 -1.45e-04 -9.48e-05 -7.56e-05 -2.39e-04 -1.73e-04 

 (2.65e-04) (2.91e-04) (2.70e-04) (2.40e-04) (2.62e-04) (2.34e-04) 
ave_temp -0.7750*** -0.8426*** -0.8464*** -0.5712*** -0.6024*** -0.6043*** 

 (0.1625) (0.1708) (0.1700) (0.1514) (0.1533) (0.1534) 
ave_temp2 0.0196*** 0.0220*** 0.0224*** 0.0104** 0.0123** 0.0126*** 

 (0.0049) (0.0050) (0.0050) (0.0048) (0.0048) (0.0047) 
              

Year FE YES YES YES YES YES YES 

City FE YES YES YES YES YES YES 

Observations 568 568 568 568 568 568 

No. of cities 142 142 142 142 142 142 

Note: Columns 1 and 4 restrict weather variation to 500 km radius around the city. Columns 2 and 5 also restrict 
weather variation to 500 km radius around the city but weighting by distance and population. Columns 3 and 6 do 
the same but excluding urban grid-cells.  
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Table F.2: Robustness checks (2) to results in Table 5.  

 
  (1)   (2)   (3)   (4)   

Dependent variable: log(pop) log(pop) log(pop) log(pop) 

     ave_rain -2.1601** -2.1601** 0.1770 0.1770 
 (0.8948) (0.9730) (0.7995) (0.7388) 

ave_rain2 3.62e-04* 3.62e-04* -3.91e-05 -3.91e-05 
 (2.01e-04) (1.83e-04) (1.53e-04) (1.37e-04) 

ave_temp -0.5541*** -0.5541*** -0.2222 -0.2222 
 (0.1348) (0.1538) (0.1461) (0.1479) 

ave_temp2 0.0136*** 0.0136*** 0.0075** 0.0075** 
 (0.0032) (0.0031) (0.0038) (0.0033) 

          

Year FE YES YES NO NO 

City FE YES YES YES YES 

City linear trends NO NO YES YES 

Observations 584 584 584 584 
No. of cities 146 146 146 146 

Note: log(pop) using GHSL data. Robust standard errors (clustered by city in columns 1 and 3 and 
by city and time in columns 2 and 4) in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 

 
 
 
 
 
 

 
Table F.3: First-step results from Table 6.  

 
 (1) (2) (3) (4) (5) 

Dependent variable:                                              

      
ave_rain -0.4206** -1.5326** -0.4206** -1.5326** -1.2924*** 
 (0.1925) (0.6365) (0.1925) (0.6365) (0.4957) 
ave_rain2 8.16e-05* 2.24e-04 8.16e-05* 2.24e-04 1.97e-04* 
 (4.66e-05 (1.53e-04) (4.66e-05) (1.53e-04) (1.12e-04) 
ave_temp -0.3705*** -0.4949*** -0.3705*** -0.4949*** -0.4063*** 
 (0.0311) (0.0826) (0.0311) (0.0826) (0.0576) 
ave_temp2 0.0104*** 0.0113*** 0.0104*** 0.0113*** 0.0137*** 
 (0.0008) (0.0023) (0.0008) (0.0023) (0.0015) 
            

Year FE YES YES YES YES YES 

Country FE YES YES YES YES YES 
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Observations 886 436 886 436 529 
No. of countries 148 146 148 146 143 
R-Square  0.67 0.56 0.67 0.56 0.71 

Note: CitySize all in logs. Columns 1 and 3 use WUP data for population. Columns 2, 4 and 5 use GHSL data. Robust 
standard errors (clustered by city) in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 

 
 
 
 
 
 
 

Table F.4: Robustness checks to results in Table 6. 
 

 (1) (2) (3) (4) (5) (6) 

Dependent variable: Moran’s I Moran’s I Moran’s I Gini Gini Gini 

       

          -0.0700*** -0.0692*** -0.0690*** -0.6333*** -0.6597*** -0.6645*** 

 (0.0235) (0.0240) (0.0239) (0.1291) (0.1342) (0.1341) 
              

Year FE YES YES YES YES YES YES 

City FE YES YES YES YES YES YES 

Observations 425 425 425 425 425 425 
No. of countries 142 142 142 142 142 142 
R-Square  0.44 0.44 0.44 0.11 0.11 0.11 
F test on exc inst 45.91*** 46.29*** 46.32*** 45.01*** 46.29*** 46.32*** 

Note: Moran´s I, Gini and CitySize all in logs. In columns 1 and 4, CitySize is estimated using weather variation in a 
500km-radius around the city. I columns 2 and 4, CitySize is estimated using weather variation in a 500km-radius 
around the city but weighting by distance and population. Columns 3 and 6, CitySize is estimated using weather 
variation in a 500km-radius around the city but weighting by distance and population and excluding urban grid-
cells. Robust standard errors (clustered by city) in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 
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Appendix G: Case Study:  

Climate Change and Urban Structure in two African and one Asian Country 

Here we present a comparative case study of two Sub-Saharan African countries – Nigeria 

and Ghana – and one South Asian country – Bangladesh, to highlight commonalities as well as 

differences in the relation between climate change and urban structure.  

Figure G.1 shows the evolution of annual temperature and rainfall with respect to values in 

1960. While the average annual temperature and its increase over time are very similar in the three 

countries, Bangladesh has a much wetter climate than the two African countries: the annual rainfall 

in 1960 was 2253mm, nearly twice as high as in Nigeria (1243mm) and Ghana (1311mm). Moreover, 

in Bangladesh, rainfall has substantially exceeded the initial values in some years and been below 

these levels in other years. In the two African countries, the trend clearly indicates less rainfall, in 

line with findings comparing SSA and SEA. Hence, farmers might be driven into cities by a lack of 

rain in SSA (i.e., Nigeria and Ghana), while both excess rain and a dearth of rain might be affecting 

individuals in SEA (i.e., Bangladesh). 

 

Figure G.1: Evolution of annual rain and temperature with respect to 1960 values 

 

 

 

 

 

Apart from the climate conditions, these three countries show some variation in their urban 

structure in 1960, which might shed light on their subsequent changes in urbanization. In 1960, 

Bangladesh was hardly urbanized at all – its urbanization rate was 5.13% - while Nigeria had an 

urbanization rate of 15.41% and Ghana one of 23.25%. Despite its low urbanization rate, 

Bangladesh’s urban population was already relatively concentrated in Dhaka, with a primacy rate of 

20.52%. Ghana had a high primacy rate of 25.38%, while in Nigeria the urban population was still 

more dispersed (primacy rate of 10.94%).  
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Figure G.2: Evolution of urbanization rates in cities of various size (largest city, cities above 
1m inhabitants, cities below 1m inhabitants) with respect to 1960 values 
 

 

 

 

 

 

 
The increases in urbanization rates in cities of different size in Figure G.2 reveal that 

countries with low initial urbanization rates – Nigeria and in particular Bangladesh – experienced 

larger increases of urbanization rates across the urban structure. Whether smaller or larger cities 

grew more depended on the initial urban structure. In Ghana, with its comparatively mature urban 

structure and high primacy rate, urbanization in smaller cities has outgrown urbanization in cities 

above 1m and in the largest city. In Nigeria and Bangladesh, we observe the opposite: a 

concentration in primary cities over the last decades. The rise of Dhaka is particularly noteworthy: it 

has grown from a population of 508,000 in 1960 to 17.6m in 2015, fueled to some extent by its 

garment industry, which has attracted many migrants. But living conditions are often bad, with 60% 

of residents living in makeshift structures (The Economist 2019). 

 

Figure G.3: Evolution of primary city variables (density, high density share, Moran’s 
I) with respect to initial values (1975 or 1990) 

 

 

 

 

 

 

A closer look into the structure of the primary cities (Figure G.3) reveals heterogeneous 

developments: Lagos’s growth in population has been matched by an expansion in the built-up area, 
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so that population density shows a decrease. Its share of high density areas remains stable. Accra’s 

population growth in Ghana might have been more moderate, but its high-density share increased 

markedly and Moran’s I decreased, indicating a more fragmented city structure. The higher 

population growth rates in smaller Ghanaian cities might help to ease the pressure on the primary 

city. The unique pull factor of Dhaka in Bangladesh is mirrored in the escalating density measures. 

Congestion, pollution and sewage are increasingly considered as severe problems. While the Dhaka 

city authority is now working on a plan for orderly city expansion, local authorities try to foster 

decentralization and migration to the country’s other cities.  

 

References of the Appendix: 

Barrios, S., Bertinelli, L., Strobl, E. (2006), Climate Change and Rural-Urban Migration: The Case of Sub-

Saharan Africa, Journal of Urban Economics, 26: 656-673 

Bluhm, R., Krause, M. (2018), Top Lights - Bright Spots and their Contribution to Economic Development. 

CESifo Working Paper 74. 

Burke, M., Hsiang, S.M., Miguel, E. (2015), Global Non-Linear Effect of Temperature on Economic 

Production, Nature, 527: 235-239 

Dell, M., Jones, B., Olken, B. (2012), Temperature Shocks and Economic Growth: Evidence from the Last 

Half Century. American Economic Journal: Macroeconomics, 4: 66-95 

Donaldson, D., Storeygard, A. (2016), The View from Above: Applications of Satellite Data in Economics. 

Journal of Economic Perspectives, 30: 171–198 

Düben, C., Krause, M. (2019) Population, Light, and the Size Distribution of Cities. ECINEQ Working 

Paper 2019-488. 

Harris, I., Jones, P.D. (2014), Updated High-Resolution Grids of Monthly Climatic Observations – the CRU 

TS3.10 Dataset, International Journal of Climatology, 34: 623-624 

Henderson, J.V., Storeygard, A., Weil, D. (2012), Measuring Economic Growth from Outer Space. American 

Economic Review, 102: 994-1028 

Henderson, J.V., Storeygard, A., Deichmann, U. (2017), Has Climate Change Driven Urbanization in Africa? 

Journal of Development Economics, 124: 60-82 

Hendrix, C.S., Salehyan I. (2012), Climate Change, Rainfall, and Social Conflict in Africa, Journal of Peace 

Research, 49: 35-49 

Moran, A.P. (1950) Notes on Continuous Stochastic Phenomena, Biometrika, 37: 17-23 

Peri, G., Sasahara, A. (2019), Impact of Global Warming on Rural-Urban Migrations: Evidence from Global 

Big Data, NBER Working Paper No. 25728. 

The Economist (2019), Bangladesh Tries to Muffle the Siren Song of the Capital, The Economist , 12 

September 2019 [online], Available at: https://www.economist.com/asia/2019/09/12/bangladesh-

tries-to-muffle-the-siren-song-of-the-capital [13.09.2019]. 

Tsai, Y.-H. (2005), Quantifying urban form: Compactness versus ‘Sprawl’, Urban Studies, 42(1): 141–161.  

https://www.melanie-krause.de/assets/pdf/ECINEQ2019-488.pdf
https://www.melanie-krause.de/assets/pdf/ECINEQ2019-488.pdf
https://www.economist.com/asia/2019/09/12/bangladesh-tries-to-muffle-the-siren-song-of-the-capital
https://www.economist.com/asia/2019/09/12/bangladesh-tries-to-muffle-the-siren-song-of-the-capital

