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A Appendix

A.1 Selection of Urban Residential Built-Up Areas

Below, we delve into greater detail about the processes involved in defining our unit

of observation. The area showcased in the satellite imagery provided by ESRI’s Ar-

cGIS World Imagery (2017) is the southeastern end of Haugesund, focusing on the

neighborhood of Norheim, which we use to illustrate these processes.

Stage 1: Data Extraction from ESM

High-resolution remote sensing data (10m x 10m) from the European Settlement Map

(ESM) of 2015 is used to indicate residential built-up areas. The ESM data focuses on

residential zones, explicitly excluding areas of industrial build-up.

The image above highlights the initial stage with residential build-up in red excluding

industrial build-up.

Stage 2: Buffer Calculation

A buffer with a radius of 50 meters is created around all identified residential built-up

areas to include the immediate surroundings.
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Above, the 50-meter buffers around residential build-up are shown in orange.

Stage 3: Removal of Non-Contiguous Areas

Non-contiguous areas, where the ratio of built-up area to open space is less than one

to ten, are dropped. This step helps exclude small standalone housing settlements far

from urban agglomerations, focusing on the integrated urban structure.

The image above shows contiguous areas pink, excluding the isolated orange ones in

order to focus on the contiguous urban structure.
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Stage 4: Matching with GHS-SMOD Data for Validation and Final Selec-

tion

For validation, we match the residential built-up areas with with Global Human Set-

tlement Model (GHS-SMOD) grid data from 2015, which provides the degree of urban-

ization on a 1 km x 1 km grid. We retain all residential built-up areas that are within

or touch areas classified as ’urban’ in the GHS-SMOD data (DN>20). This includes

both urban core and peripheral areas like suburbs.

Displayed above, areas in light green have been matched with GHS-SMOD data, iden-

tifying the continuum of urban neighborhoods for our final sample.

Stage 5: Separation Using Grunnkrets Borders

The identified areas are then separated based on grunnkrets borders as provided by

Kartverket. This step ensures that the neighborhooods fall within the official admin-

istrative boundaries for accurate analysis and reporting.
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The grunnkrets borders in red delineate our final units of observation, the neighbor-

hoods.

A.2 Distance to the CBD

For the gradients of density and its components with respect to the city center, we need

a definition of where the city center is located. There is no unambiguous approach in

the empirical literature; often-used definitions work with job density or qualitative

criteria (historical center, public transport hub etc), see Liotta et al. (2022). We follow

these lines of thought and work with the density of cafés recorded in the Open Street

Map data as a proxy for the CBD. Assuming that where people work they have to

consume food and beverages, implies that a high density of cafés signals high levels

of business activity. This approach has recently been used by Ahlfeldt et al. (2022),

who relate the density of Starbucks franchises to prime business locations within world

cities. In addition, recent work has highlighted the role of cafés and restaurants as

endogenous amenities, in particular in the city center (Aguiar and Bils, 2015, Baum-

Snow and Hartley, 2020). Using the Open Street Map data on the location of cafés, we

define the gravitational center of consecutive areas that are larger than half a km2 and

have a café density of more than 5 cafés per km2 to be a city center. This definition

allows us to define at least one city center in all except three of our urban areas. In

downtown Oslo, we merged the city centers that had less than 5km distance to one

another. In this way, we obtain a total of 25 city centers in all urban areas in Norway
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in our final sample. Most urban areas only have one city center, but some have more

(such as Oslo).

As a robustness check, we create an alternative measure for the city center based

on ports. In Norway, ports are natural harbors, and in an economy strongly driven by

fishing, sea trade and - more recently - oil, they correlate strongly with historical city

centers (Helle et al., 2006). Because of strong path dependence, these tend to overlap

with modern centers in many cities (unless external shocks to the urban structure have

occurred which does not seem to be the case here), see Ahlfeldt et al. (2022). We use

data on the size of ports from the World Port Index. As the coordinates of the ports

reported in the World Port Index are in some cases on land and in others on water,

we unify locations by hand using daylight satellite images. Moreover, we compare pre-

industrial-revolution maps of Norway with the location of ports in urban areas to prove

that they are highly correlated. Hence, the location of ports captures historical - and

still modern-day - city centers. Based on the port location, we obtain 19 city centers

for all urban areas in Norway in our final sample. Most urban areas only have one city

center, but some have more (such as Oslo). Figure A-1 compares the two definitions

of the city center for Oslo.

For distance calculations, we work with the shortest path through the terrain. We

do so for various reasons. First, there is a certain amount of unevenness in the harsh

Norwegian terrain (including mountains, islands and waterways) which might impact

Euclidean distance (’how the crow flies’). On the other hand, roads are man-made, so

road distance potentially entails an endogeneity issue that we would like to avoid. Our

way out of this is to work with the shortest path through the terrain. Also, we assume

that transport costs are equal to the incline of the terrain and that traveling over water

has a cost equal to a 10 degree incline in a 100m × 100m raster. Comparing actual

road data and shortest paths reveals that overground roads are often very close to

shortest paths. Larger deviations are often associated with the location of tunnels. To

ensure that our choice of distance measurement does not drive the results, we conduct

a robustness check in Figure A-7, where we measure distance with Euclidean distance

rather than the shortest path given the terrain. The pattern of the density gradients

is very similar to the one based on the shortest path through the terrain.
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Figure A-1: Oslo City Centers

Note: The figure shows neighborhoods within the circumference of the metropolitan area of Oslo.
Color from red to blue indicates in increasing order the distance to the city centers measured by
the shortest path. On the left, city centers are defined by café density; on the right based on port
locations. Gray borders indicate neighborhoods with urban development.

A.3 Latent Profile Analysis

Here we provide more detail on the latent profile analysis (LPA), which we use to

algorithmically categorize neighborhoods according to their density components. It as-

sumes that there are unobserved latent profiles (i.e. clusters of individual observations)

that generate patterns of outcomes on various variables, here the three density com-

ponents. Using (quasi-)maximum likelihood techniques, LPA tries to uncover theses

latent profiles as clusters (Hagenaars and McCutcheon, 2002, Hancock and Samuelsen,

2008).

LPA belongs to the branch of finite Gaussian mixture models (GMM). Latent Pro-

file Analysis is conceptually very similar to Latent Class Analysis (LCA), with the

only difference being that the outcome variable - here the magnitude of the density

components - is continuous rather than binary. Also, LPA with GMMs can be consid-

ered a generalization of the often-used K-means clustering. K-means assumes spherical

profiles due to its reliance on Euclidean distance. GMMs, however, model each profile

with a Gaussian distribution, which includes parameters for both the mean (similar to

the centroid in K-means) and the covariance (determining the spread and orientation

of the cluster). They are more flexible in supporting other shapes than spherical, as

well as varying orientations.
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We run numerous different GMMs with a varying number of profiles (from 2 to

20), using the R routine mclust (Scrucca et al., 2016). All models are fitted by the

Expectation-Maximization (EM) algorithm based on the outcomes of the logarithm of

the three density components. We compare the Bayesian Information Criteria (BIC)

of both the different models and the number of profiles to see which perform best. The

highest score is reached by VEV models with 7, 9, and 10 profiles. In Figure A-2, we

display the Bayesian Information Criteria (BIC) of the various models.

Figure A-2: BIC of Tested Gaussian Mixture Models
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Note: The figure shows the performance of all Gaussian mixture models run by the mclust routine
in R, using all possible numbers of profiles. All models are fitted with the EM-algorithm based on
the neighborhood-level logarithms of building height, crowding, and residential coverage.

The VEV type of Gaussian mixture models allows forVarying volume, Equal shape

(here ellipsoidal) and Varying orientation of the latent profiles. The next step is to

choose between the models with the 7, 9, and 10 profiles which all perform similarly in

terms of BIC. We argue in favor of parsimony, but also consider that the BIC tends to

overestimate the number of profiles in case of non-normal variables (such as building
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height). For robustness, we analyze the change in entropy associated with varying

numbers of profiles. The results in Figure A-3 suggest notable change points at 4 and

7 profiles. Additionally, we conduct a Bootstrap Likelihood Ratio Test and find that

increasing the number of profiles beyond 7 does not significantly increase the model

fit, see Table A-2. We consequently settle on 7 profiles.

Figure A-3: Entropy of Tested VEV models
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Note: The left plot shows the entropy associated with the number of profiles. The red line corre-
sponds to the estimate of a piece-wise linear regression with one change point. A kink at 6 profiles
is discernible. The blue line corresponds to the estimate of a piece-wise linear regression with
two change points. One kink at 4 profiles and one at 7 can be seen. The right panel shows the
normalised change in entropy when going down step-wise from 10 to 2 profiles. A notable jump
occurs at 7 profiles.
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Table A-2: Bootstrap Sequential Likelihood Ratio Test for the Number of Latent
Profiles

LRTS
bootstrap

p-value

1 vs 2 2009.16966 0.001

2 vs 3 253.28442 0.001

3 vs 4 172.84890 0.001

4 vs 5 82.36948 0.001

5 vs 6 164.38859 0.001

6 vs 7 229.25799 0.001

7 vs 8 -21.83383 0.674

Note: The model used is VEV and the number of replications is 999. We see the model fit increase,
when the number of profiles increases until 7, but then a decrease when 8 profiles are used.
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A.4 Supplementary Tables and Figures

Figure A-4: Neighborhoods in Trondheim

Note: The figure shows the grunnkrets borders in black, and the urban residential built-up areas in
red (on the left), compared to the area of Trondheim in the OpenStreetMap project (on the right).

Figure A-5: Building Height and Footprint in Bergen

Note: The figure illustrates our approach of constructing our data set involving building heights
and footprints. It shows the 3D view of the old port of Bergen (Brugen) from the sea (on the left),
and a “bird’s-eye view” of the city center (on the right). In both figures, blue indicates developed
areas, with a darker blue indicating higher buildings.
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Figure A-6: Distance Gradients (with City Centers Based on Ports)
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Note: The figure displays a scatter plot with bins of 2.5% (blue dots), a locally estimated smoothed
scatter plot with a 50% bandwidth (red line), and a 2D kernel density estimation plot (blue shades),
all of which represent urban density and its components plotted against the distance to city center,
measured by the shortest path given the terrain. The city center is defined based on port locations.
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Figure A-7: Distance Gradients (with Euclidean Distance)
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Note: The figure displays a scatter plot with bins of 2.5% (blue dots), a locally estimated smoothed
scatter plot with a 50% bandwidth (red line), and a 2D kernel density estimation plot (blue shades),
all of which represent urban density and its components plotted against distance to the city center
(measured as Euclidean distance).
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Figure A-8: Distance Gradients for all Neighborhoods in Oslo
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Note: The figure displays a scatter plot with bins of 2.5% (blue dots), a locally estimated smoothed
scatter plot with a 50% bandwidth (red line), and a 2D kernel density estimation plot (blue shades),
all of which represent urban density and its components plotted against the distance to the city
center of Oslo, measured by the shortest path given the terrain.
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Figure A-9: Distance Gradients for all Neighborhoods in Trondheim
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Note: The figure displays a scatter plot with bins of 2.5% (blue dots), a locally estimated smoothed
scatter plot with a 50% bandwidth (red line), and a 2D kernel density estimation plot (blue shades),
all of which represent urban density and its components plotted against the distance to the city
center of Trondheim, measured by the shortest path given the terrain.
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Figure A-10: Distance Gradients for all Neighborhoods in Molde
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Note: The figure displays a scatter plot with bins of 2.5% (blue dots), a locally estimated smoothed
scatter plot with a 50% bandwidth (red line), and a 2D kernel density estimation plot (blue shades),
all of which represent urban density and its components plotted against the distance to the city
center of Molde, measured by the shortest path given the terrain.
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Figure A-11: Scatter Plot of the Three Components
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Note: The figure displays the bin scatter plot of residential coverage and crowding as well as building
height (indicated by darker shades of red).

Table A-3: Number of Neighborhoods by Profile and Urban Area

Profile 1 2 3 4 5 6 7

Bergen 134 4 40 66 73 6 18
Bodø 25 0 6 16 3 0 0
Hamar 36 6 3 23 6 0 0
Haugesund 16 35 2 15 17 0 7
Kristiansand 89 10 16 24 10 0 1

Kristiansund 11 10 1 5 5 0 2
Lillehammer 9 1 2 5 0 0 0
Molde 20 0 3 3 0 0 0
Oslo 842 52 363 208 148 123 155
Stavanger 112 1 51 41 38 0 6

Tromsø 15 6 0 7 4 0 2
Trondheim 102 1 71 43 60 4 29
Ålesund 20 14 1 11 8 0 0

Note: The table shows the number of neighborhoods per urban area that fall in each of the 7 profiles.
More information on the density characteristics of each profile is provided by Table 3.
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Figure A-12: Box Plots of the Within-Profile Variation of Neighborhood Density
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Note: This figure presents the distribution of urban density or its components across different
profiles, visualized through box plots. The boxplot displays data spread by profiles, emphasizing
the middle 50% of data between the first (25th percentile) and third quartiles (75th percentile),
with a line for the median, indicating the midpoint. Whiskers show the range, reaching up to the
highest and lowest values. Black points mark the mean and black bars the standard deviation for
each profile.
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Figure A-13: Latent Profiles in Bergen

Note: The figure shows a map of Bergen with the neighborhoods as classified by the latent profiles,
see Table 3 for more details on the profiles.

Figure A-14: Latent Profiles Oslo

Note: The figure shows a map of Oslo with the neighborhoods as classified by the latent profiles,
see Table 3 for more details on the profiles.
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Table A-4: Neighborhoods with the Lowest Latent Profiles Uncertainty

Profiles Uncertainty Name Latitude Longitude

1 0.0091 Voiebyen-Nordvest (Kristiansand) 58.1085 7.9532
1 0.0094 Hosle Sør 04 (Oslo) 59.9303 10.5797
1 0.0096 Rekkevik (Oslo) 59.0254 10.0720
1 0.0096 Nordeide (Bergen) 60.3171 5.2799

2 0.0117 Tangen-Åskollen 13 (Oslo) 59.7113 10.2548
2 0.0118 Fuglevik 3 (Oslo) 59.1950 10.9336
2 0.0125 Mosbron (Haugesund) 59.2529 5.2057
2 0.0143 Raglatua (Haugesund) 59.3946 5.3176

3 0.0820 Nyg̊ard (Oslo) 59.9491 10.7553
3 0.0833 Solslett (Bodø) 67.2877 14.4094
3 0.0858 Nyhavn (Bergen) 60.4194 5.3083
3 0.0891 S̊andre Hellerud (Oslo) 59.8705 10.8062

4 0.0000 Bragernes Sentrum 6 (Oslo) 59.7482 10.1997
4 0.0000 Mart’nsplassen (Hamar) 60.7953 11.0844
4 0.0000 Osnes Nedre (Ålesund) 62.3438 5.8299
4 0.0000 Gaustad (Oslo) 59.9522 10.7185

5 0.0315 Filipstad (Oslo) 59.9090 10.7153
5 0.0500 Foldal (Trondheim) 63.3868 10.4161
5 0.0653 Mulen (Bergen) 60.4049 5.3288
5 0.0758 Steinkjelleren (Bergen) 60.3980 5.3278

6 0.0070 Tøyen rode 2 (Oslo) 59.9189 10.7642
6 0.0092 Gamle Aker rode 4 (Oslo) 59.9267 10.7489
6 0.0093 Tøyen rode 2 (Oslo) 59.9146 10.7708
6 0.0098 Grønland rode 4 (Oslo) 59.9154 10.7646

7 0.0000 Industriomr̊adet 1 (Stavanger) 58.8503 5.7396
7 0.0000 Danvik-Fjell 14 (Oslo) 59.7184 10.2281
7 0.0000 Hagaløkka (Oslo) 59.8308 10.4268
7 0.0000 Rosenborg 18 (Trondheim) 63.4353 10.4145

Note: For each of the seven latent density profiles, the table shows the five neighborhoods from the
country-wide sample that have the lowest uncertainty of belonging to the profile. It indicates the
uncertainty, the identification number of the corresponding grunnkrets, the name of the neighbor-
hood with its urban area in brackets, as well as its latitude and longitude.
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Table A-5: Elasticities of Within-City Density and Its Components with Socio-
Economic Outcomes and Interactions

(1) (2) (3) (4) (5)

Depend.Var:
mean
income

income
ineq.

age
mean

kid
share

sick notes
mean

Panel C: The components of urban density with interactions

ln(residential cover.) -0.70∗∗∗ -1.28∗∗∗ -10.16∗∗∗ 0.11∗∗∗ 0.96∗∗∗

(0.08) (0.26) (2.51) (0.03) (0.15)
ln(building height) 0.68∗∗∗ 1.04∗ 6.32 -0.25∗∗∗ -1.82∗∗∗

(0.23) (0.57) (5.83) (0.07) (0.31)
ln(crowding) -0.43∗∗∗ -0.78∗∗∗ -5.08∗∗∗ 0.05∗∗∗ 0.57∗∗∗

(0.04) (0.12) (1.09) (0.01) (0.06)
ln(residential cover.) 0.33∗∗ 0.31 4.82 -0.10∗∗∗ -0.85∗∗∗

× ln(building height) (0.13) (0.32) (3.58) (0.04) (0.19)
ln(residential cover.) -0.15∗∗∗ -0.26∗∗∗ -2.59∗∗∗ 0.02∗∗∗ 0.22∗∗∗

× ln(crowding) (0.02) (0.06) (0.54) (0.01) (0.03)
ln(building height) 0.17∗∗∗ 0.23∗ 2.21∗ -0.02∗ -0.36∗∗∗

× ln(crowding) (0.05) (0.12) (1.26) (0.01) (0.06)
triple interaction 0.05∗ 0.03 2.11∗∗ -0.02∗∗ -0.16∗∗∗

(0.03) (0.07) (0.82) (0.01) (0.04)
R2 0.50 0.13 0.17 0.43 0.30

Fixed-effects Yes Yes Yes Yes Yes
Observations 3,322 3,322 3,322 3,322 3,322

Note: The table complements Table 4 by reporting regression results of socio-economic outcome
variables on its individual components including interactions. For readability, log density measures
are given per square meter.mean income is the log of income per capita, income ineq. is income
inequality captured by the coefficient of variation of income, age mean is average age within a
neighborhood, kids share denotes the share of children and teenagers under 18, and sick notes the
average number of sick notes. Standard errors are clustered at the kommune (municipality) level,
see Section 3.1 for detail. ***, **, * denote significance at the 1%, 5%, and 10% levels, respectively.
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