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A major hurdle for the data collection at the county level have been several local gov-

ernment reforms that led to a consolidation of several administrative districts (counties).

This happened mostly, but not exclusively, in the eastern part of Germany. Major re-

forms relevant to our data sample, 2002–2017, occurred in Saxony-Anhalt (2007), Sax-

ony (2008), and Mecklenburg-Vorpommern (2011). In addition, North Rhine-Westphalia

(2009) and Lower Saxony (2016) saw the consolidation of two counties each. The total

number of counties shrunk from 439 at the beginning of our sample (2002) to 401 at

the end (2017). While some data series were reconstructed by the statistical agencies for

previous years based on the latest area classification, for example GDP, in general, each

reform led to a break in the recorded time series and required adjustment work on our

part.1 In the following, we provide a detailed account of our data assembly work.

A.1 Data sources and data adjustments

A large portion of the raw data comes from the Regionaldatenbank Deutschland (regional

data base, RDB), a data base jointly hosted by Germany’s federal and regional statistical

offices. We combined it with data from the GENESIS-Online data base of the Federal

Statistical Office of Germany, data from the Bundesagentur für Arbeit (federal employ-

ment agency, BA), and in some instances with information directly obtained from the
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1A few other methodological changes led to slight inconsistencies in the definition of some variables
over time. We did not attempt to correct the data for these changes but accounted for them in our
regression analysis by the inclusion of year dummy variables.
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respective regional statistical offices. The geodata for the construction of geography-

based spatial weights and the data and results visualization in map format are provided

by the Geodatenzentrum (geodata center, GDZ) of the Federal Agency for Cartography

and Geodesy. Table A.1 lists the variables and corresponding data sources from which

we assembled our data set.

Table A.1: Variables, data sources, and necessary adjustments
variable level source notes on data source adjustments

gross domestic product per capita, in Euro counties RDB Table 82111-01-05-4 –
gross value added, in 1000 Euro, by industry counties RDB Table 82111-01-05-4 –
investment, in 1000 Euro counties RDB Table 42231-01-04-4 A.1.1, A.1.2
population, end of year counties RDB Table 12411-01-01-4 A.1.1
territorial area, in km2 counties RDB Table 11111-01-01-4 –
harmonized consumer price index, base = 2015 Germany GENESIS Table 61121-0001 –
regional price index, 2009, base = Bonn counties BBSR – A.1.1
employees subject to social security contributions,

commuter interrelations counties BA – A.1.1
employees subject to social security contributions,

with/without professional/academic qualifications,
at place of work, end of year (mid-year for 2011) counties BA – A.1.1

geodata counties GDZ VG2500, UTM32 –

Note: The RDB (Regionaldatenbank Deutschland) can be accessed at https://www.regionalstatistik.de/. GENESIS-
Online is maintained by Destatis (Statistisches Bundesamt) and accessible via https://www-genesis.destatis.de/. The
BA (Bundesagentur für Arbeit) statistics from 2013 onwards can be obtained from its website, https://statistik.

arbeitsagentur.de/, while data for earlier years had to be obtained from the BA upon written request. Additional data
sources were used for the manual adjustments as explained in Appendix A.1.1. Geodata from the GDZ (Geodatenzentrum)
of the BKG (Bundesamt für Kartographie und Geodäsie) can be downloaded from https://www.geodatenzentrum.de/.
BBSR is an abbreviation for Bundesinstitut für Bau-, Stadt- und Raumforschung (2009). The RDB, GENESIS-Online,
and GDZ data were obtained in 2020 under the data licence dl-de/by-2-0 (https://www.govdata.de/dl-de/by-2-0).
Regarding our adjustments to the data, see the respective appendix sections.

A.1.1 Local government reorganizations

The following reforms affected our data set since many of the time series were not officially

revised retrospectively, or only for a limited number of years. We thus had to manually

adjust (some of) the pre-reform data for the counties affected by those reforms where this

has not been done by the statistical authorities. In most cases, this meant simply adding

up the respective numbers for the consolidated counties. In some instances, when entirely

new borders were drawn, we constructed weights based on municipality level population

data to proportionally assign the values from the old districts to the new one.

1. Saxony-Anhalt: In 2007, the number of administrative districts was reduced by

10. For the affected counties, we had to amend the pre-2006 investment and popu-

lation data, the pre-2007 data on employees’ professional/academic qualifications,

the pre-2008 data on commuter flows, and the regional price index. Where weight-

ing was necessary, constant 2005 end-of-year population weights at the municipality

level were obtained from the regional statistical office of Saxony-Anhalt.2

2https://www.stala.sachsen-anhalt.de/gk/kreform2007/aenderung.dr.html; last updated on
19 July 2007.
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2. Saxony: In 2008, the number of administrative districts was reduced by 16. For

the affected counties, we had to amend the pre-2004 investment data, the pre-2008

data on employees’ professional/academic qualifications, and the pre-2009 data on

commuter flows. For the regional price index, constant 2006 end-of-year population

weights were obtained from the RDB.

3. North Rhine-Westphalia: In 2009, the rural and urban districts of Aachen were

consolidated to the Städteregion Aachen. We had to amend the pre-2009 data on

investment, population data, and employees’ professional/academic qualifications,

and the pre-2010 data on commuter flows. For the regional price index, constant

2008 end-of-year population weights were obtained from the RDB.

4. Mecklenburg-Vorpommern: In 2011, the number of administrative districts was

reduced by 10. For the affected counties, we had to amend the pre-2011 investment3

and population data, the pre-2012 data on employees’ professional/academic qual-

ifications and commuter flows, and the regional price index. Where weighting was

necessary, constant 2010 end-of-year population weights at the municipality level

were obtained from the regional statistical office of Mecklenburg-Vorpommern.4

5. Lower Saxony: In 2016, the urban district Osterode am Harz was integrated into

the urban district Göttingen. We had to amend the pre-2016 data on investment,

population data, and employees’ professional/academic qualifications, and the pre-

2017 data on commuter flows. For the regional price index, constant 2015 end-of-

year population weights were obtained from the RDB.

A.1.2 Investment data

Time series data for investment is not available for all economic sectors at the German

county level. As a proxy, we use investment reported by firms in the mining and quar-

rying industry and the manufacturing industry (sections B and C of the Classification of

Economic Activities, WZ 2008, of the Federal Statistical Office of Germany).

Besides the adjustments due to the local government reorganizations, we had to inter-

polate a few irregularly missing data points. For each county and year, we computed the

investment share in the total investment at the next higher administrative district level

or statistical region. At this higher level, the data was available without gaps. We then

linearly interpolated these shares and subsequently computed the investment level at the

county level. Whenever data was missing at the beginning or end of a time series, we

have filled the blanks based on a nearest neighbor extrapolation of the investment share.

3For 2011, the Mecklenburg-Vorpommern investment data was missing in the RDB. We instead ac-
cessed the data directly from the regional statistical office (statistical report E163 2011 00).

4Statistical report A123 2010 22.
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A.1.3 Regional price index

Time series data for prices at the local level are unavailable. We construct a county-

level index for deflating the nominal variables, where necessary, by adjusting the German

consumer price index with a regional price index constructed by the Bundesinstitut für

Bau-, Stadt- und Raumforschung (2009).5 The latter is an attempt to measure relative

consumer price differences across German counties in the year 2009. Because it represents

these differences only at a single point in time, we have to implicitly assume that the price

distribution across counties is constant throughout our sample period. This assumption

does not appear to be too problematic given the finding by Vortmann et al. (2013) that

price disparities between East and West Germany have been fairly stable since 2000.

A.2 Descriptive statistics

In Tables A.2 to A.5, we provide some summary statistics for our data. Panel (a) of Figure

A.1 highlights the wealth concentration in the top quartile of the counties, and panel (b)

illustrates the negative correlation of the average annual growth rate with the initial level

of real GDP per capita. Table A.6 presents the evolution of Moran’s I as a measure of

global spatial autocorrelation over the whole sample period for the three different spatial

weight matrices considered in the main paper. For local spatial autocorrelation, Table

A.7 lists the top-3 and bottom-3 counties according to the local version of Moran’s I.

5We construct our deflator from the German consumer price index because the regional price index
is only available for consumer prices. With the inclusion of year dummies in our panel data regression
model, the choice of the deflator becomes irrelevant.
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Table A.2: Summary statistics for raw data, 2002–2017

obs mean sd min max

gross domestic product per capita, in Euro 6,416 30,278 13,787 11,385 180,454

gross value added, in 1000 Euro

total 6,416 5,929,956 9,184,494 745,121 125,931,874

agricultural sector 6,416 49,585 47,843 122 492,633

industrial sector 6,416 1,527,527 1,867,166 69,926 22,737,816

construction sector 6,416 256,317 275,540 19,276 4,990,538

services sector 6,416 1,235,860 2,406,627 99,258 33,287,606

financial sector 6,416 1,572,484 3,138,810 154,649 38,495,528

public sector 6,416 1,288,184 2,058,654 163,659 39,682,812

investment, in 1000 Euro 6,416 133,007 186,821 1,334 2,398,613

population 6,416 204,240 231,206 33,944 3,613,495

area, in km2 6,416 891.52 723.26 35.7 5,495.6

harmonized consumer price index, base = 2015 6,416 92.33 6.67 81.5 102.1

regional price index, 2009, base = Bonn 401 91.13 4.91 83.4 114.4

employees subject to social security contributions

commuters, outflow 6,416 25,735 19,905 2,256 179,911

commuters, inflow 6,416 25,735 38,697 2,208 380,473

total 6,416 71,245 95,986 10,780 1457,214

with professional qualifications 6,416 42,865 48,308 6,710 709,963

with academic qualifications 6,416 8,364 19,072 369 374,425

Note: The table reports the number of observations (obs), the sample average (mean), the standard deviation

(sd), the minimum (min) and the maximum (max). The summary statistics are for the data after the adjustments

indicated in Table A.1. Sectors are broadly classified according to the Classification of Economic Activities, WZ

2008, of the Federal Statistical Office of Germany. The agricultural sector classification (WZ 2008 section A)

includes forestry and fishery. The industrial sector classification (WZ 2008 sections B–E) excludes construction

(WZ 2008 section F). The services sector classification (WZ 2008 sections G–J) includes trades, transportation,

information, and communication services. The financial sector classification (WZ 2008 sections K–N) includes

financial and insurance services, real estate services, and business services. The public sector classification (WZ

2008 sections O–U) includes public administration, education, health and social services, entertainment, and

other services.
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Table A.3: Summary statistics for real GDP per capita

year mean median sd min max skewness kurtosis Gini

2002 33,424 29,801 13,428 16,138 105,143 2.04 8.35 0.1973

2003 33,211 29,545 13,291 15,881 107,786 2.03 8.41 0.1970

2004 33,498 29,786 13,334 15,744 97,453 1.97 7.73 0.1964

2005 33,347 29,501 13,465 15,920 112,165 2.16 9.38 0.1968

2006 34,182 30,143 13,819 16,198 109,969 2.08 8.55 0.1977

2007 35,096 30,791 14,197 16,645 115,979 2.12 8.86 0.1972

2008 34,948 30,856 13,617 16,513 112,274 2.07 8.64 0.1913

2009 33,657 30,116 12,989 15,951 99,460 2.01 7.93 0.1895

2010 35,195 31,440 13,994 16,271 129,546 2.32 10.91 0.1920

2011 36,107 32,230 14,653 16,858 143,790 2.62 13.60 0.1915

2012 36,061 32,372 14,514 17,072 145,142 2.79 15.13 0.1875

2013 36,252 32,759 14,479 17,128 143,336 2.93 16.45 0.1838

2014 37,325 33,933 14,649 17,594 151,038 2.96 17.15 0.1811

2015 37,977 34,327 14,596 18,184 135,821 2.63 13.36 0.1804

2016 39,045 35,079 16,311 18,484 197,078 3.81 28.49 0.1846

2017 39,672 35,519 16,079 18,461 185,187 3.44 23.47 0.1824

Note: For each year, the table reports the sample average (mean), the median, the standard

deviation (sd), the minimum (min) and the maximum (max), the skewness, kurtosis, and

the Gini coefficient.

Table A.4: Summary statistics for regression variables

obs mean sd min max

ln(real gross domestic product per capita) 6,416 10.418 0.330 9.664 12.191

ln(real investment per capita) 6,015 6.386 0.770 2.375 9.715

population growth rate 6,015 -0.001 0.009 -0.072 0.058

share of employees with professional qualifications 6,015 0.636 0.061 0.438 0.813

share of employees with academic qualifications 6,015 0.088 0.043 0.023 0.329

commuters per capita, outflow 6,416 0.137 0.053 0.031 0.310

commuters per capita, outflow, 2002 401 0.121 0.049 0.031 0.274

commuters per capita, inflow 6,416 0.128 0.104 0.018 0.780

commuters per capita, inflow, 2002 401 0.113 0.097 0.018 0.649

Note: The table reports the number of observations (obs), the sample average (mean), the standard

deviation (sd), the minimum (min) and the maximum (max). For the dependent variable and

the commuter flows, the data are summarized over the years 2002–2017, while for the exogenous

regressors they are summarized over the years 2003–2017 as the initial year 2002 is not used for the

latter variables. The population growth rate is approximated by the first difference in the natural

logarithm.
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Table A.5: Summary statistics for counterfactual treatmeant variables

obs mean sd min max 5% 95%

gross domestic product per capita 401 25,068 11,142 11,443 85,474 14,207 47,256

share of gross value added

agricultural sector 401 0.016 0.015 0.000 0.073 0.000 0.046

industrial sector 401 0.264 0.105 0.044 0.731 0.107 0.446

construction sector 401 0.054 0.021 0.009 0.168 0.023 0.091

services sector 401 0.193 0.052 0.078 0.544 0.123 0.283

financial sector 401 0.241 0.053 0.083 0.487 0.174 0.327

public sector 401 0.233 0.068 0.065 0.490 0.134 0.351

population density, per km2 401 522.5 670.0 42.2 3,973.9 77.3 2,032.1

Note: The table reports the number of observations (obs), the sample average (mean), the standard

deviation (sd), the minimum (min) and maximum (max), and the 5% and 95% quantiles. Sectors are

classified as in Table A.2. The data are summarized for the year 2002.
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Figure A.1: Distribution of real GDP per capita of the 401 German counties in 2002 and

its average annual growth rate from 2002 to 2017
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Table A.6: Moran’s I measure of global spatial autocorrela-

tion in real GDP per capita

commuter WN contiguity WN inverse-distance WN

year Moran’s I z-score Moran’s I z-score Moran’s I z-score

2002 -0.074 -2.108∗∗ 0.106 3.559∗∗∗ 0.011 2.496∗∗

2003 -0.088 -2.539∗∗ 0.103 3.478∗∗∗ 0.009 2.050∗∗

2004 -0.102 -2.983∗∗∗ 0.096 3.228∗∗∗ 0.006 1.566

2005 -0.109 -3.222∗∗∗ 0.090 3.063∗∗∗ 0.005 1.424

2006 -0.114 -3.399∗∗∗ 0.086 2.919∗∗∗ 0.005 1.318

2007 -0.107 -3.576∗∗∗ 0.086 2.926∗∗∗ 0.004 1.145

2008 -0.117 -3.594∗∗∗ 0.084 2.843∗∗∗ 0.002 0.906

2009 -0.125 -3.853∗∗∗ 0.073 2.499∗∗ -0.001 0.359

2010 -0.128 -3.964∗∗∗ 0.066 2.265∗∗ 0.001 0.590

2011 -0.116 -3.615∗∗∗ 0.063 2.177∗∗ 0.002 0.845

2012 -0.125 -3.916∗∗∗ 0.055 1.901∗ 0.001 0.615

2013 -0.125 -3.908∗∗∗ 0.050 1.758∗ 0.001 0.594

2014 -0.131 -4.122∗∗∗ 0.049 1.703∗ -0.001 0.361

2015 -0.110 -3.445∗∗∗ 0.058 1.999∗∗ 0.004 1.260

2016 -0.114 -3.695∗∗∗ 0.041 1.463 -0.001 0.283

2017 -0.108 -3.479∗∗∗ 0.042 1.502 -0.001 0.358

Note: The expected value of Moran’s I under the null hypothesis of no global

spatial autocorrelation is −0.002. The significance levels refer to a two-sided test of

no global spatial autocorrelation.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A.7: Moran’s I measure of spatial autocorrelation in real GDP

per capita, 2002

commuter WN contiguity WN inverse-distance WN

rank z-score rank z-score rank z-score

global Moran’s I -2.108∗∗ 3.559∗∗∗ 2.496∗∗

local Moran’s I (top 3)

Frankfurt am Main (u) 2 11.964∗∗∗ 1 5.238∗∗∗ 1 12.574∗∗∗

München (u) 1 12.207∗∗∗ 2 4.178∗∗∗ 3 9.055∗∗∗

Main-Taunus-Kreis (r) 9 5.909∗∗∗ 3 3.651∗∗∗ 7 5.232∗∗∗

München (r) 3 11.586∗∗∗ 385 -1.160 2 10.392∗∗∗

local Moran’s I (bottom 3)

Bonn (u) 13 4.376∗∗∗ 400 -3.787∗∗∗ 117 0.839

Hamburg (u) 49 0.992 397 -2.438∗∗ 400 -5.389∗∗∗

Wolfsburg (u) 55 0.889 401 -7.763∗∗∗ 401 -18.976∗∗∗

Gifhorn (r) 401 -5.765∗∗∗ 367 -0.856 143 0.495

Helmstedt (r) 399 -5.064∗∗∗ 372 -0.933 177 0.234

Schweinfurt (u) 351 -1.147 399 -3.761∗∗∗ 371 -1.737∗

Rhein-Pfalz-Kreis (r) 400 -5.106∗∗∗ 386 -1.267 399 -4.710∗∗∗

Note: The counties are ranked in terms of their standardized z-score for local Moran’s I. (r)

and (u) indicate rural and urban districts, respectively. Listed are counties that are in the top

3 or bottom 3 of the rank distribution (bold-faced rank numbers) for at least one spatial weight

matrix. The ordering in the table is by average rank. The significance levels refer to a two-sided

test of no local/global spatial autocorrelation.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Appendix B Additional empirical results

B.1 Different years for commuter flows

Table B.1: Bias-corrected QML estimation with commuter flows from different years

commuter WN,2002 commuter WN,2017 commuter WN,avg

(1) (2) (3) (4) (5) (6) (7) (8) (9)

yt−1 0.892∗∗∗ 0.856∗∗∗ 0.827∗∗∗ 0.887∗∗∗ 0.856∗∗∗ 0.827∗∗∗ 0.888∗∗∗ 0.855∗∗∗ 0.827∗∗∗

(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

WNyt 0.361∗∗∗ 0.044∗∗ 0.037∗∗ 0.394∗∗∗ 0.058∗∗∗ 0.051∗∗∗ 0.370∗∗∗ 0.050∗∗∗ 0.044∗∗∗

(0.016) (0.019) (0.018) (0.016) (0.019) (0.019) (0.016) (0.018) (0.018)

WNyt−1 -0.288∗∗∗ 0.008 0.002 -0.313∗∗∗ -0.002 -0.008 -0.292∗∗∗ 0.004 -0.003

(0.018) (0.020) (0.020) (0.018) (0.021) (0.020) (0.018) (0.020) (0.019)

invt 0.006∗∗∗ 0.005∗∗∗ 0.004∗∗∗ 0.006∗∗∗ 0.005∗∗∗ 0.004∗∗∗ 0.006∗∗∗ 0.005∗∗∗ 0.004∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

popt -0.377∗∗∗ -0.218∗∗∗ -0.212∗∗∗ -0.359∗∗∗ -0.219∗∗∗ -0.214∗∗∗ -0.368∗∗∗ -0.219∗∗ -0.213∗∗

(0.070) (0.083) (0.082) (0.069) (0.083) (0.082) (0.070) (0.083) (0.082)

proft−1 0.115∗∗∗ 0.088∗∗ 0.046 0.109∗∗∗ 0.087∗∗ 0.045 0.110∗∗∗ 0.085∗∗ 0.044

(0.023) (0.036) (0.036) (0.023) (0.035) (0.036) (0.023) (0.036) (0.036)

acadt−1 0.351∗∗∗ -0.013 0.103∗ 0.317∗∗∗ -0.013 0.101∗ 0.336∗∗∗ -0.012 0.103∗

(0.035) (0.059) (0.060) (0.036) (0.059) (0.060) (0.035) (0.059) (0.060)

time effects no yes yes no yes yes no yes yes

crisis × sector no no yes no no yes no no yes

Note: The dependent variable yt is ln(real GDP per capita). The independent variables are ln(real investment per capita)

(inv), population growth (pop), and the shares of employees with professional qualifications (prof) or academic qualifications

(acad). Some specifications include 14 time dummies for the years 2004–2017, and some include interaction effects between a

post-financial crisis dummy (years 2008–2017) and the initial sectoral shares in GVA for 4 sectoral groupings. Standard errors

are in parentheses. The spatial weight matrices are constructed from commuter flows in 2002, 2017, or the average over all years

from 2002 to 2017, respectively.

All regressions use a total of 6,015 observations for 401 counties.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Because the QML methodology for short-T time-space dynamic panel models cannot

accommodate time-varying spatial weight matrices, we used the commuter flows from the

initial year 2002 to construct the spatial weights in the main paper. Table B.1 compares

our baseline estimates, for convenience reprinted in columns (1)–(3), with those using

commuter flows from the final year 2017 in columns (4)–(6) or the average commuter flows

over the whole sample period in columns (7)–(9). The results confirm our expectation

that the results are robust to this choice.6 Especially compared to the different estimates

obtained with geographic spatial weight matrices, the differences from varying the year

for the commuter flows are largely negligible.

6More detailed results on the spatial multiplier effects are available upon request.
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B.2 Alternative estimators

Table B.2: Alternative estimators for the dynamic panel models

FE FE-BC GMM GMM GMM GMM

commuter WN,t contiguity WN inverse-distance WN

yt−1 0.718∗∗∗ 0.852∗∗∗ 0.911∗∗∗ 0.903∗∗∗ 0.913∗∗∗ 0.905∗∗∗

(0.016) (0.018) (0.030) (0.030) (0.037) (0.031)

WN,tyt 0.010 0.244 -0.173

(0.020) (0.181) (0.174)

WN,t−1yt−1 -0.010 -0.243 0.174

(0.022) (0.198) (0.158)

invt 0.006∗∗∗ 0.004∗∗∗ -0.005 -0.006 -0.003 -0.001

(0.002) (0.001) (0.004) (0.004) (0.009) (0.013)

popt -0.220∗∗∗ -0.205∗∗∗ -0.142 -0.040 -0.129 -0.180∗

(0.068) (0.069) (0.089) (0.206) (0.089) (0.095)

proft−1 0.083∗ 0.057 0.053 0.074 0.038 0.071∗

(0.047) (0.037) (0.042) (0.046) (0.053) (0.042)

acadt−1 0.055 0.125 0.116 0.097 0.098 0.112

(0.105) (0.079) (0.072) (0.073) (0.103) (0.080)

time effects yes yes yes yes yes yes

crisis × sector yes yes yes yes yes yes

AB p-value 0.876 0.838 0.826 0.603 0.905

Hansen p-value 0.098 0.170 0.187 0.096

Note: The dependent variable yt is ln(real GDP per capita). The independent variables are ln(real investment

per capita) (inv), population growth (pop), and the shares of employees with professional qualifications (prof) or

academic qualifications (acad). All specifications include 14 time dummies for the years 2004–2017 and interaction

effects between a post-financial crisis dummy (years 2008–2017) and the initial sectoral shares in GVA for 4 sectoral

groupings. Standard errors robust to heteroskedasticity and intra-county correlation are in parentheses. The considered

estimators are the fixed-effects estimator (FE), a bias-corrected fixed-effects estimator (FE-BC; Breitung et al., 2022),

and generalized method of moments estimators (GMM). p-values are reported for the Arellano and Bond (1991) test

(AB) of no second-order serial correlation in the first-differenced residuals, and the Hansen (1982) overidentification

test. The commuter-based spatial weight matrix is time-varying.

The GMM estimators are implemented as two-step estimators with instruments yt−1−s, WN,t−1−syt−1−s (if spatial

lags are included), invt−1−s, popt−s with s ∈ [0, 4] for the forward-orthogonally transformed model (Arellano and

Bover, 1995). Thus, there are 4 overidentifying restrictions for each of these variables, respectively. The variables

proft−1, acadt−1, and the dummy variables for time effects and crisis interaction effects are instrumented by them-

selves for the model in deviations from within-group means. Nonlinear moment conditions valid under no serial error

correlation are included as well (Ahn and Schmidt, 1995). The first-step estimator used to compute the optimal GMM

weighting matrix is the conventional two-stage least squares estimator.

All regressions use a total of 6,015 observations for 401 counties.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table B.2 presents additional estimation results. In the first three columns, spatial

spillover effects are ignored. A comparison of the first two columns illustrates the Nick-

ell (1981) bias of the conventional fixed-effects (FE) estimator. As expected given the

still relatively short number of time periods, the bias-corrected fixed-effects estimator

(FE-BC) of Breitung et al. (2022) yields a significantly higher coefficient for the lagged

dependent variable. The impact of the bias correction on the other coefficients is less
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substantial, although still noticeable.

The third column present results from a GMM estimator. Following the sugges-

tion of Arellano and Bover (1995), the county-specific effects α are removed with a

forward-orthogonal deviation, i.e. by subtracting the mean of the future observations.

Subsequently, given that the idiosyncratic error component εt is assumed to be serially

uncorrelated, the lagged values lnyt−1−s and WN lnyt−1−s, s ≥ 0, can be used as in-

strumental variables in this transformed equation. In a similar way, regressors in Xt can

be instrumented by using appropriate lags as well.7 Here, we relax the strict exogeneity

assumption for investment and population growth by treating the former as endogenous

and the latter as predetermined. Instruments for them (and the lagged dependent vari-

able) are selected by exploiting the fact that past observations of endogenous variables

are uncorrelated with the error term, once the latter is transformed by removing its

“forward mean”. For predetermined variables, the contemporaneous observation yields a

valid instruments as well under this transformation. Instruments for the strictly exoge-

nous professional/academic qualifications and the dummy control variables are chosen

analogously to the fixed-effects estimator.

Additional instruments in the spirit of Blundell and Bond (1998) are often used to

overcome potential identification problems. However, they require the assumption that

there are no systematic differences across counties regarding their initial growth path.

Given the historical divide of Germany and the fact that the catching-up process of the

eastern part is still ongoing, this assumption is hard to justify. Figure 3 in Section 3.3

of the main text strongly reinforces this point. Further challenges are the curse of too

many instruments, which we account for by “collapsing” and “curtailing” (s ∈ [0, 4]) the

instruments (Kiviet, 2020).8

As a remedy for potential identification problems due to the high persistence of the de-

pendent variable, we add the nonlinear moment conditions proposed by Ahn and Schmidt

(1995), which are valid under the absence of serial correlation in the idiosyncratic error

term. The estimated autoregressive coefficient is even higher than with the FE-BC esti-

mator and our QML estimators in Table 1 of the main paper. As a consequence, most of

the variation in the dependent variable is explained by its own past. In such a situation,

it is not unusual to find that the remaining coefficients are statistically insignificant, as

7Higher-order spatial lags, Wq
N lnyt−1−s with q ≥ 2, can be valid instruments as well, but they may

not be very informative if the spatial spillover effects are small. Spatial lags of Xt could possibly also be
used as instruments.

8If all theoretically valid instruments are employed, their number can easily become large relative
to the number of counties in our sample. This can lead to severe finite-sample biases and weakened
specification tests, calling for appropriate measures to reduce the instrument count (Roodman, 2009).
However, the choice of which instruments to retain is often very arbitrary and leads to substantial
researcher degrees of freedom, with the risk of selectively reporting the most favorable results. For our
application, we found large differences in the estimation results under different sets of instruments and
conflicting evidence from overidentification tests, even when the underlying exogeneity assumptions were
left unchanged.
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it is the case here. A potential weakness of the instruments, as partly reflected in higher

standard errors, possibly also contributes to these results.

The last three columns show GMM results for models with a contemporaneous spa-

tial lag and a spatial time lag of the dependent variable. These spatial lags are instru-

mented analogously to the lagged dependent variable by using appropriate lags for the

forward-orthogonally transformed model. The GMM estimator has the advantage that it

can accommodate time-varying spatial weights, which we exploit here for the commuter

flows. However, both additional coefficients are statistically insignificant, and their point

estimates offset each other in the calculation of long-run effects. While the nonlinear

Ahn and Schmidt (1995) moment conditions can help with the identification for the co-

efficient of the lagged dependent variable, it is unclear whether this applies as well to the

coefficients of the spatial lags or whether a potential weak-instruments problem remains

here.

The Arellano and Bond (1991) test provides supportive evidence that there are no

omitted model dynamics which could lead to serial correlation in the idiosyncratic er-

ror term. The Hansen (1982) overidentification test is mildly supportive of the model

specification, although the p-values are not too comfortable. When we classify popula-

tion growth as endogenous, or professional/academic qualifications as predetermined or

endogenous, the Hansen test does not improve.9

B.3 Additional results for counterfactual scenarios

In addition to Figures 7 to 9 in the main paper, Figures B.1 to B.4 visualize the hetero-

geneity of the long-run spatial multipliers for the untreated counties under the remaining

counterfactual treatment scenarios. These results are based on the respective QML esti-

mates.

9The additional results under varying classifications of the variables are not shown for brevity.
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Figure B.1: Counterfactual long-run spatial multipliers for treatment of industrial centers

(1,∞)
(.25,1]
(.125,.25]
[0,.125]
treated

(a) commuter WN

(1,∞)
(.25,1]
(.125,.25]
[0,.125]
treated

(b) contiguity WN

(1,∞)
(.25,1]
(.125,.25]
[0,.125]
treated

(c) inverse-distance WN

Figure B.2: Counterfactual long-run spatial multipliers for treatment of agricultural cen-

ters
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Figure B.3: Counterfactual long-run spatial multipliers for treatment of urban counties
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Figure B.4: Counterfactual long-run spatial multipliers for treatment of rural counties

The analysis in the main text assumed local shocks εi of equal size to the log of

real GDP per capita. This may not be desired. If we want to investigate the impact

of equally costly policy interventions in different counties, we need to adjust the mag-

nitude of the shocks to account for the size of the counties. Due to differences in the

relative importance, an intervention of x Euro in a poor county translates into a much

bigger εi = ln(x/real GDPi + 1) than an intervention of the same absolute size in a

rich county. In the following, we therefore consider similar scenarios as before, but with
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Table B.3: Total counterfactual long-run returns
commuter WN contiguity WN inverse-distance WN

treated untreated all treated untreated all treated untreated all

financial centers 6.372 1.081 7.453 6.605 1.627 8.232 6.196 0.791 6.987
industrial centers 5.882 1.106 6.988 5.898 1.535 7.432 6.049 1.220 7.269
agricultural centers 5.970 0.570 6.539 6.427 2.643 9.070 6.069 2.214 8.284
high GDP per capita 6.115 1.555 7.671 5.859 0.454 6.313 6.101 0.548 6.649
low GDP per capita 5.931 0.778 6.709 6.092 4.224 10.316 6.085 2.655 8.740
high population density 6.275 1.172 7.448 6.430 0.629 7.059 6.205 0.471 6.676
low population density 6.049 0.390 6.439 6.781 2.704 9.485 6.077 1.839 7.916

Note: Reported are the relative long-run returns for a shock to real GDP in the treated counties, cumulatively for the
treated, untreated, and all counties. The returns are computed based on the regressions in columns (3), (6), and (9) of Table
1, with county-specific shock sizes corresponding to a 10m Euro increase in real GDP for each of the 20 treated counties,
respectively.

shocks εi corresponding to an intervention of 10m Euro in each of the 20 treated counties,

respectively.10

In Table B.3, we report the corresponding long-run returns. For example, considering

the commuter-based spatial weights, the combined return for the treated counties to

an intervention in the 20 largest financial centers is about 6.4 times the size of the

intervention. Even though there was no direct intervention in the untreated counties,

the cumulative effect (for all 381 untreated counties combined) slightly exceeded the size

of the investment.11 The total long-run return – adding up the returns for the treated

and untreated – is about 7.5 times the total initial investment. In other words, the

initial investment of 200m Euro adds over time 1.5bn Euro to the economy. This now

enables a comparison of alternative interventions in terms of value for money. Based

on the shock transmission through the commuter network, larger returns are reaped

from an intervention in wealthy and densely populated counties, thanks to them being

gravitational centers for commuter flows.

The picture is largely reversed when the shocks are transmitted through geographic

networks, which can create large spillover effects independent of any economic linkages.

Here, taken together, the untreated counties can benefit from the intervention in the

treated counties by as much as 4.2 times the initial investment. This results in a sub-

stantial 10.3-fold total return (under contiguity weights) when the 20 counties with the

lowest GDP per capita are treated.

10Due to the nonlinearity of the log-transformation, the multiplier effects depend on the size x of the
intervention, but the differences are small enough to not affect the qualitative conclusions. We calculate
the respective innovations εi based on the values of real GDP (in prices of 2015) in the year 2002.

11With equally sized shocks εi, the total returns for the treated from Table B.3 would be identical to
the corresponding average multipliers from Table 3. For the untreated, the total returns would be higher
than the average multipliers by factor 381/20 ≈ 19, because the cumulative return for the 381 untreated
counties is evaluated relative to the joint intervention in the 20 treated counties.
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