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Christian Düben∗ Melanie Krause†

November 21, 2020

Abstract

The emergence and growth of cities are shaped by both geographical features

and institutional factors. We are able to analyze their interplay at different levels

of the urban hierarchy by exploiting a unique data set on cities in imperial China

from 221 BCE to 1911 CE, a geographically diverse empire with a long history of

centralized rule. Developing a stylized theoretical model, we combine econometrics

with machine learning techniques. Our results suggest that the higher a city is in

the urban hierarchy, the less important are geographical compared to institutional

factors. At the other end of the scale, market towns without government

responsibilities are most strongly shaped by geographical characteristics. We also

find evidence that many cities of political importance in imperial times still enjoy

a special status nowadays, underlining the modern relevance of these historical

factors.
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1 Introduction

What determines in which locations cities are founded and how they develop over time?

The economic geography literature highlights the importance of natural characteristics,

such as climatic conditions, river access, and soil quality (Krugman, 1991; Fujita et al.,

1999; Henderson et al., 2018). In addition, it is obvious that political and institutional

factors foster a city’s status and growth, for example via (de-)centralization of governance

or strategic military and inner-country trade considerations (Ades and Glaeser, 1995;

Davis and Henderson, 2003; Bosker et al., 2013).

Yet how exactly geographical and institutional factors act together to explain cities’

development is difficult to ascertain. It is conceivable that geographical characteristics

play a larger role in determining urban location, whereas institutions later on are more

decisive for their growth by conferring them political status and resources (Henderson

and Wang, 2007). Alternatively, natural characteristics might be valued differently in

different institutional settings; for example, it has been shown that coastal access gained

precedence over road access after the demise of the Roman empire (Michaels and Rauch,

2018). The strong history dependence of city location and size, together with data

availability and measurement issues, complicates the study of institutions and geography.

In this paper, we study the interplay of geographical and institutional factors at

different levels of the urban hierarchy. In many regions of the world, the institutional

background and the resulting urban hierarchy present too many changes over time in

order to intricate the effects. By contrast, we are able to gain new insights by relying on

the unique case of imperial China from the rise of the Qin dynasty in 221 BCE until the

end of the Qing dynasty in 1911 CE. China is not only the world’s most populous country

but has one of the longest urban development histories in the world, with primitive cities

first occurring along the Yellow River in northern China more than 4000 years ago (Wu

et al., 2014). Compared to traditionally fractionalized Europe, China spent much of its

history unified and centrally governed. When dynasties came to an end, they sometimes

temporarily disintegrated into smaller rivaling regions, but later merged again into a

large, centrally governed unit with the rise of the subsequent dynasty (Ko et al., 2018;

Lewis, 2009). It is imperial China’s centralized spatial organization controlling a vast

administrative urban landscape that allows us to track urbanization in a well defined

institutional framework over millennia. While the vestiges of colonialism still shape

the urban structure in much of Sub-Saharan Africa (Bonfatti and Poelhekke, 2017),

China experienced foreign influence of such kind to a much smaller extent. Europe

engaged with China through centuries of trade, coastal concessions in the 19th and 20th

centuries as well as two opium wars in the 19th century. Japan invaded China in two
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Sino-Japanese wars in the late 19th and the 20th centuries. Multiple dynasties were

founded by neighboring peoples, such as the Mongols (Mostern, 2011; von Glahn, 2016).

Nonetheless, foreign control remained moderate compared to many other world regions.

Urbanization in China can therefore largely be seen as an outcome of its own dynasties

and empires. Moreover, the Chinese case allows for a persistent categorization of cities

along the urban hierarchy. This provides a unique setting for examining the varying

influence of geography on the location of cities of different institutional status.

In our study, we exploit data on the location of administrative cities throughout

imperial Chinese history from 221 BCE until 1911 CE (Fairbank Center for Chinese

Studies of Harvard University and Center for Historical Geographical Studies at Fudan

University, 2016). In our theoretical framework we sketch the utility maximization

problem of an emperor who has to place cities of different administrative ranks, namely

county and prefecture seats, given constraints posed by local geography as well as

military threats. We develop predictions about how county seats and higher-ranked

prefecture seats are influenced by the interplay of geographical and institutional factors,

which we then test empirically. Using both econometric regressions and random

forest techniques from machine learning, we arrive at our main findings: Lower-ranked

county seats are more strongly shaped by local geographical factors than higher-ranked

prefecture seats. For the latter, a centrality argument to minimize transport costs and

to facilitate communication across the empire is more important. We subject these

results not only to numerous robustness checks in terms of model specifications, but

also elaborate on them with an additional data set. For the years 1820 and 1911 CE,

we also have data on market towns, which are non-administrative urban locations. In

line with our theory and other findings, market towns are most strongly shaped by local

geography, even more so than county seats. Finally, we show the modern relevance of

these historical factors. Modern cities that once were a county or prefecture seat are on

average more populous nowadays and have a higher local economic activity as proxied

for by nighttime lights.

Located at the interplay between geography, institutions, and economic history,

our paper relates to various strands of the literature. With our investigation on the

relation between geography and urbanization, we anchor our paper in the New Economic

Geography (NEG) literature, see Krugman (1991, 1993); Fujita et al. (1999) as well

as Proost and Thisse (2019) and Redding (2020) for recent theoretical overviews. The

predictions of the NEG literature on how first- and second-nature geography shapes

the emergence of cities and the distribution of economic activity have been tested

empirically by a growing number of studies. On a global level, Henderson et al. (2018),

Mitton (2016) and Motamed et al. (2014), inter alia, show that favorable geographical
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conditions have lead to earlier globalization and persistently higher economic activity.

As continent-specific studies, Black and Henderson (2003) find that over the 20th

century, American cities in warmer and drier regions - first nature - but also in regions

with larger market potential in terms of big neighboring cities - second nature - grew

faster than others. Bosker and Buringh (2017) compare 250,000 potential European city

locations to actual settlements, finding evidence of an increasing importance of sea and

river locations over time. We build on these insights and link them to the Chinese context.

In addition, we consider the political determinants of city locations, thereby

relating to the institutional strand of the urban economics literature. Various political

determinants of city size and status are well-known, ranging from autocracy (Ades and

Glaeser, 1995; Henderson and Wang, 2007) to fiscal federalism (Davis and Henderson,

2003). Global studies such as Soo (2005) and Düben and Krause (2020) highlight the

importance of political institutions in explaining the cross-country variation in the size

distribution of cities.

In contrast to studies focusing either on geography or institutions, our paper adds

to the small but growing number of studies that combine both perspectives. Often,

these are historical case studies focusing on a particular world region. For example,

Barjamovic et al. (2019) use commercial records from Assyrian merchants to estimate

the location of Bronze Age cities. With the collapse of the Roman empire as a defining

episode for Europe (Scheidel, 2019), Michaels and Rauch (2018) compare the diverging

trajectory of French and English cities based on different geographical and institutional

factors. Bosker et al. (2013) use historic city locations to investigate why the urban

center of gravity moved from the Islamic world to Western Europe during the period

from 800 to 1800, while Jedwab et al. (2020) analyze city growth in medieval Europe in

terms of their physical geography, finding that institutions played a larger role later on.

Schönhölzer and Weese (2019) analyze how administrative boundary switches affected

the growth of European cities in the short and the long run, with border location and

their effects on the governance of European nation states also the focus of the study by

Kitamura and Lagerlöf (2020). Yet, outside of Europe - and in particular in China -

much less is known on the nexus between geography and institutions in the emergence of

cities. Many economic history papers on China concentrate on individual aspects, such

as the threat of nomadic invasion in the North (Bai and Kung, 2011), the flooding of

the Yellow River (Chen et al., 2012), tax collection across the empire (Ko et al., 2018),

the effects of malaria on Chinese urbanization (Flückinger and Ludwig, 2017), and the

economic rationale behind city walls (Du and Zhang, 2019; Ioannides and Zhang, 2017).1

1For ongoing work on the effect of provincial capital status on historic population size in imperial
China, see Bai and Jia (2020).
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By contrast, we exploit variation across the overall urban hierarchy, thereby investigating

the effects of geography conditional on the institutional status. The unique setting of

imperial China with its centralized spatial organization, exceptional institutional path

dependence, and vast network of administrative cities allows us to answer this question

to an extent that would not be feasible with any other part of the world.

Following the discussion of historical mechanisms, we link to the literature on

contemporaneous China. By showing that the interplay of geographic and institutional

factors shaped the distribution of Chinese cities in ways which still matter today, we add

to the vast and increasing number of papers studying modern Chinese cities. Recent

contributions have focused, inter alia, on their geography (Christensen and McCord,

2016), railway access (Li et al., 2018), and seaports (Funke and Yu, 2011). Case studies

of individual cities (e.g. Zhang et al., 2013; Tan et al., 2014) or comparative studies

of several large cities (e.g. Baum-Snow et al., 2017; You and Yang, 2017; Lin and

Song, 2002) have provided different contemporaneous perspectives on their growth and

structure. However, to the best of our knowledge, there are no papers which have

turned to historical Chinese urban and geographical data to shed light on how the urban

distribution came about.

This paper clearly relates to various strands of the economic literature that it

draws on and extends. Nonetheless, the central foundation upon which the paper is

constructed is the vast evidence compiled by historians. Our theoretical framework, the

empirical strategy, and the interpretation of the results rely on an extensive collection of

historical details that we primarily assemble from publications by Mostern (2011), von

Glahn (2016), Major and Cook (2017), Lewis (2009), Mote (1999), Wu and Gaubatz

(2013), Elvin (2004), and Wilkinson (2013). Those insights reach from a flood in

11 CE that proved to be a major contributor to the Xin dynasty’s downfall (Major

and Cook, 2017), over the kaizhong system of provision delivery to the frontier in

exchange for salt trading privileges (von Glahn, 2016), to the link between the size

of administrative regions and the ease of tax collection (Mostern, 2011), and many others.

The remainder of this paper is structured as follows. Section 2 develops a stylized

model on the interaction of geography and institutions in the historical Chinese context.

This will serve as the framework for the subsequent empirical analysis. Section 3 presents

our data set, descriptive statistics, and the estimation strategy. Section 4 shows our

empirical results using historical data. Section 5 links our historical insights to modern-

day city size and status. Section 6 concludes. The Appendix contains proofs, detailed

data sources as well as numerous supplementary results and robustness checks.
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2 Conceptual Framework

We start by laying out the conceptual framework for our empirical analysis. To this

goal, we formalize the mechanisms on the interplay of geography and institutions in the

context of ancient China. While keeping the exposition stylized, we allow our simple

model to capture recurrent features of Chinese history, such as the nomadic military

threats in the North (Bai and Kung, 2011) and the flooding of the Yellow River (Chen

et al., 2012; Elvin, 2004; Lewis, 2009).

At the core of the conceptual framework, there is the Chinese Emperor setting

up administration units to maximize control over his empire given the geographical

constraints. In particular, the emperor has to choose the number of county seats Nc

and the number of higher-ranked prefecture seats Np as well as their precise locations.2

While the role of county seats is local administration and tax collection, prefecture

seats are armed with military power and can counter foreign invasions as well as local

upheavals (Mostern, 2011).3

For our formal analysis, we will consider an empire of a fixed area, consisting of Ni

individual cells (pixels). Pi is the population density in grid cell i. We will assume that it

depends positively on local geographical conditions Ai, comprising inter alia agricultural

productivity, and negatively on a threat factor Ti. Total threats are a function of various

threats, both military threats and natural hazards, for example, floods.4

Assumptions 1. Population Pi in cell i is a positive function of local geographical

conditions Ai and a negative function of threats Ti:

∂Pi(Ai, Ti)

∂Ai

> 0 and
∂Pi(Ai, Ti)

∂Ti
< 0 (1)

where total threats are a positive function of both military threats Mi and natural hazards

2Some dynasties installed additional administrative layers on top of the county and prefecture seats,
which were of a supplementary nature and did not replace the system of counties and prefectures. The
Song dynasty (960 - 1279 CE) e.g. set up provincial circuits that assisted in resource transportation but
did not cut the direct link between prefectures and the imperial court (Mostern, 2011).

3Spatial policies followed a Persistence and Transformation approach that justified frequent
adjustments to administrative units (Mostern, 2011). The entire administrative system was optimized
towards centralized control by the imperial court. County magistrates and prefects, the officials governing
counties and prefectures respectively, were directly installed by the court and posted outside their home
regions. This sometimes required the assistance of translators but curtailed the influence of local elites
(Major and Cook, 2017; Mostern, 2011; Wilkinson, 2013). Centralized control remained an important
characteristic, although it encountered some temporary and regional limitations from time to time.
Especially in times of conflict, the imperial court did not always manage to maintain the system of
perfect centralization and had to grant more rights to local leaders - e.g. following a rebellion during the
Tang dynasty in the 870s (Mote, 1999).

4Nomadic invasions in the north, the in many dynasties dominant military threat, was strongly linked
to changes in climatic conditions (Elvin, 2004; Bai and Kung, 2011).
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Hi:
∂Ti(Mi, Hi)

∂Mi

> 0 and
∂Ti(Mi, Hi)

∂Hi

> 0 (2)

When maximizing his control over individual pixels in his empire, the emperor has to

place both the Nc county seats and the NP prefecture seats strategically. Each cell has to

pay a lump-sum tax λ proportional to its population, but as tax collection works through

the county seats, there is a transport cost associated with it from the cell to the nearest

county seat. This can be modeled as an iceberg transport cost τ times the travel-time

distance Dci between cell i and county seat c.5 Denoting the number of cells which are

nearest to county seat c with Nic, we obtain taxes collected by county seat c as

Nic∑
i=1

(1− τDci)λPi (3)

Summing eq. (3) over all Nc county seats gives the total taxes in the empire collected

at county seats as

Nc∑
c=1

Nic∑
i=1

(1− τDci)λPi (4)

In addition to total tax revenues, the emperor’s control can be measured by his ability

to ward off military threats. TheNp prefecture seats should thus be located so that threats

in all cells can be thwarted quickly and effectively, with the reaction to a threat Mi in

cell i depending on the travel-time distance Dpi to its nearest prefecture seat. Denoting

the number of cells which are nearest to prefecture seat p with Nip, we obtain the impact

of military threats occurring in the realm of prefecture p as

Nip∑
i=1

DpiMi (5)

Summing eq. (5) over all Np prefecture seats gives the total impact of threats in the

empire

Np∑
p=1

Nip∑
i=1

DpiMi (6)

This sum of threats will enter the emperor’s utility function with a negative sign

and we will allow for a non-linearity parameter m > 1, as (i) responding to military

threats is more time sensitive than the regular tax-based correspondence with county

seats and (ii) it is primarily the major military threats and large invasions that threaten

5The transport costs capture the direct cost in terms of collecting the taxes from various cells as well
as the likelihood that taxes might not be paid, which can also be assumed to increase with remoteness
as measured by travel-time distance (Mostern, 2011).
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the stability of the empire.

Apart from countering military threats, prefecture seats coordinate counties within

their territory. The emperor places prefecture seats in positions that minimize the

distance, and thereby facilitate communication, between prefecture seats and the

respective counties seats:

Np∑
p=1

Ncp∑
c=1

Dpc (7)

We can now write down the emperor’s utility function: Choose the numbers Nc and

Np of county and prefecture seats as well as their location so that the travel-time weighted

distance from each cell to the nearest county, each county seat to the nearest prefecture

seat and each threat-weighted cell to the nearest prefecture seat is as small as possible.6

This will maximize the emperor’s utility:

max
Nc,Np,locations

U
[ Nc∑
c=1

Nic∑
i=1

(1− τDci)λPi︸ ︷︷ ︸
+

,

Np∑
p=1

Ncp∑
c=1

Dpc︸ ︷︷ ︸
−

,

Np∑
p=1

Nip∑
i=1

(DpiMi)
m

︸ ︷︷ ︸
−

]
(8)

Minimizing the distance between population-weighted cells and county seats,∑Nc

c=1

∑Nic

i=1DciPi, is equivalent to maximizing the sum of taxes collected at county seats,∑Nc

c=1

∑Nic

i=1(1−τDci)λPi. To avoid the corner solution of placing a county and a prefecture

seat in each cell, so that Np = Nc = Ni, we have to place some constraints on the

maximization problem:

Assumptions 2. Each county seat costs an amount Gc to administer. It also has to

export an amount Ec for the administration of the higher-level prefecture seat. County

seats have to balance their budgets and finance themselves from the taxes of the Nic cells

under its administration so that7

Gc + Ec ≤
Nic∑
i=1

(1− τDci)λPi ∀ c ∈ {1, ..., Nc} (9)

Ec ≥ 0 ∀ c ∈ {1, ..., Nc} (10)

6Centralized control over the vast empire had, apart from probably contributing to the emperor’s
happiness, important benefits for the empire. Thanks to centralized control at such a large scale, the
imperial state could provide very resource-demanding, yet important public goods such as flood control
and protection from northern nomadic invasions (Lewis, 2009). The local population was usually unable
to maintain these public goods alone. When the Qing dynasty (1644 - 1911 CE) put water control in
private hands, the Middle Yangzi suffered devastating floods (von Glahn, 2016; Perdue, 1987; Marks,
2012; Will, 1985).

7Historical evidence suggests that spatial planners changed county borders or merged counties rather
than transferring taxes between county seats when a county’s tax revenues were to small to support its
own administration (Mostern, 2011).
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Summing up eq. (9) at the aggregate level gives

Nc∑
c=1

(Gc + Ec) ≤
Nc∑
c=1

Nic∑
i=1

(1− τDci)λPi (11)

Assumptions 3. Each prefecture seat costs an amount Gp to administer. This money

can come from the nearest county seats (minus transport costs), while also allowing cross-

subsidies from other prefecture seats (minus transport costs)8:

Gp ≤
Npc∑
c=1

(Ec − τDpcEc) +

Np∑
q 6=p

(Epq − τDpqEpq) ∀ p ∈ {1, ..., Np} (12)

Summing up eq. (12) at the aggregate level gives

Np∑
p=1

Gp ≤
Np∑
i=1

Npc∑
i=1

(Ec − τDpcEc) +

Np∑
p=1

Np∑
q 6=p

(Epq − τDpqEpq) (13)

Hence, we can formulate the emperor’s task as the maximization of eq. (8) subject to

the constraints eq. (9) and eq. (10) at the county level as well as eq. (12) at the prefecture

level. While no analytical closed-form solution can be obtained, we can simplify the

expressions under special conditions imposed on Gc and Ec, see Section A.1.

With a view to our empirical analysis, let us look now derive some predictions of the

theoretical framework:

Theorem 1. (a) In areas with favorable geography, there are more county seats.

(b) The location of prefecture seats is determined to a lesser extent and only indirectly

by the presence of geographical features.

(c) There are more prefecture seats per county seat in regions that are prone to military

invasion.

(d) If the population grows at a higher rate than the costs of maintaining county seats,

the optimal number of county seats will increase.

Proof: See Online Appendix A

It is the focus of our empirical analysis to take these predictions to the data.

8Resources were transported from richer, often interior to poorer, often frontier regions. Our
model’s inter-prefecture transfers capture this mechanism with which prefectures can balance each other’s
budgets. Despite high transport costs, especially the northern frontier, home an extensive military force,
required substantial transfers. Many dynasties motivated merchants to transport border supplies in
exchange for salt trading privileges, a system with a limited capacity. When the Ming dynasty (1368 -
1644 CE) issued to many salt trading privileges, the scheme broke down (von Glahn, 2016).
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3 Data and Empirical Strategy

3.1 Data

We employ a geo-spatial data set on historic Chinese prefectures, spanning from the

rise of the Qin dynasty in 221 BCE until the end of the Qing dynasty in 1911 CE

(Fairbank Center for Chinese Studies of Harvard University and Center for Historical

Geographical Studies at Fudan University, 2016). The China Historical Geographic

Information System (CHGIS) data tracks the shape of these administrative regions

and the location of politically relevant cities within them, i.e. prefecture and county

seats, at a yearly frequency.9 County seats handle local administration, including tax

collection and legal disputes. Multiple counties make up a prefecture. The prefecture

seat manages counties, coordinates their tax collection efforts, holds military power,

handles major court cases such as capital crimes and is, unlike county seats, in

direct contact with the imperial court. Some dynasties installed additional layers for

various purposes, but counties and prefectures remained the foundation of imperial

administration (Mostern, 2011; Major and Cook, 2017). Given that until around

the 12th century cities primarily served administrative functions (Wu and Gaubatz,

2013), our data of administrative cities paints a rather complete picture of urban

settlements throughout the earlier dynasties.10 Figure 1 shows the data for the year

1350 CE. Zooming in on prefecture Jingzhou Fu in Figure 2, we can get a better idea of

the location of the 14 county seats within this prefecture in addition to the prefecture seat.

While our main analysis will focus on the prefecture and county seats, CHGIS also

provides information on market towns, i.e. non-administrative urban localities that

increasingly played a role in the second millennium CE, cross-sectionally for 1820 and

1911 CE. We employ this data in Section 4.3, comparing the different interplay of

geography and institutions for administrative and non-administrative cities.

The set of geographic variables collected for this study includes temperature

(Matsuura and Willmott, 2018a), precipitation (Matsuura and Willmott, 2018b), the

distance from major rivers (Natural Earth, 2019), the distance from the coast (Wessel

and Smith, 1996, 2017), distance from the equator, elevation (Danielson and Gesch,

2011), ruggedness (Nunn and Puga, 2012), dominant soil type, landform, and lithology

(Dijkshoorn et al., 2008). Details can be found in Online Appendix B.

9The CHGIS data covers the entire territory of Chinese empires except for the outlying provinces of
Neimeng, Qinghai, Xinjiang, and Xizang.

10As Wu and Gaubatz (2013) describe, trade-oriented cities began to emerge following the Tang
dynasty (618 - 907 CE).
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County Seat Prefecture Seat

Figure 1: CHGIS: China in 1350 CE

County Seat Prefecture Seat

Figure 2: CHGIS: Prefecture Jingzhou Fu in 1500 CE
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For the path dependence analysis in Section 5, we supplement our data set with

modern settlement locations and shapefiles derived from the GHS Urban Centre Database

(Florczyk et al., 2019).11

3.2 Descriptive statistics

Table 1: Geography Summary Statistics

Mean St. Dev. Min Max

Distance from Coast 692.507 499.438 -1.708 2,302.794

Distance from River 129.588 121.051 0.472 701.471

Distance from Equator 3,835.773 872.772 2,012.333 5,934.338

Elevation 1,161.858 1,266.958 -0.139 5,467.496

Ruggedness 198,578.889 197,356.492 0.000 1,373,285.008

Temperature 9.834 7.335 -10.283 25.267

Precipitation 848.889 541.154 59.872 4,968.969

Notes: Distances in km, temperature in ◦C, precipitation in mm per year, elevation in meters,

ruggedness index in millimeters as defined by Nunn and Puga (2012). Values refer to the Chinese

empire’s baseline shape with 86,257 pixels 7.33 x 9.51 km in size. Landform, dominant soil type, and

lithology are categorical variables and summarized in Online Appendix B. See Table B-1 for details

on variable generation. Variables are differently scaled in subsequent chapters to facilitate readability.

The summary statistics of the geographical variables at the cell level in Table 1 underline

the large variety of local conditions. Average temperature varies from an average of

-10 degrees Celsius in some regions to 25 degrees in others; some cells are at the sea

level, while others at an altitude of more than 5,000 m. Ruggedness, which is known to

strongly determine travel costs (Hirte et al., 2020), varies profoundly across the empire.

Apart from the continuous geography variables in Table 1 we also use three categorical

variables on landform, dominant soil type, and lithology.12

11Florczyk et al. (2019) combine satellite images on built-up structures and census data to create
agglomeration shapes that are economically more meaningful than administrative city borders, see Düben
and Krause (2020).

12The heartland of Chinese empires is delimited by natural barriers on all sides: in the east by the
sea, in the north by nomadic grasslands that were unsuitable to Chinese sedentary agriculture, in the
north-west by the desert, in the west by the Himalayas, and in the south by a tropical climate with a
disease environment unsuitable to the Chinese. In southern regions such as Guangxi, mortality rates
among government officials were high and the Song dynasty settled convicts in these hazardous territories
(Mostern, 2011; Marks, 1998).
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Table 2: Correlation between County Size and Geography in 1500 CE

County

Size

Elev. Rugg. Temp. Prec. Dist. C. Dist. R.

Elevation 0.37

Ruggedness 0.20 0.77

Temperature -0.17 -0.46 -0.10

Precipitation -0.11 -0.21 0.22 0.73

Dist. Coast 0.30 0.69 0.46 -0.45 -0.31

Dist. River -0.08 -0.27 -0.10 0.04 0.10 -0.50

Dist. Equator -0.04 -0.08 -0.37 -0.80 -0.81 0.14 0.05

Notes: We do not observe the actual county size as county borders are unobserved. Instead, we use the

average county size per prefecture, dividing the prefecture’s area by the number of counties within it.

The geography variables refer to average pixel values within prefectures. The table omits categorical

variables.

Table 2 shows the correlation of average county size with the geographical features.

We can already see some of the predictions from our theoretical framework represented

in the descriptive statistics. Note that a higher density of county seats implies a smaller

county size. This means that the prediction of a higher (lower) county seat density in

areas of more (less) favorable geography (Prediction 1a of Theorem 1) is reflected in

the strongly positive correlation between county size and mean ruggedness as a negative

geographical feature.
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Figure 3: Number of Prefecture Seats and County Seats

Also, the map in Figure 1 shows that there were relatively more prefecture seats
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per county seats near the Northern border of the empire, where the threat of nomadic

invasions was highest (Bai and Kung, 2011). This is in line with prediction 1c of

Theorem 1.

Figure 3 plots the quantity of county and prefecture seats over time. This evolution

could be linked to a multitude of factors ranging from the empire’s spatial extent over

population growth to an evolution of the link between geography and institutions.

3.3 Empirical Strategy

3.3.1 Direct Effects of Geography

We test predictions 1a and 1b about the varying impact of geography on cities of different

political statues by running the following regression at the pixel-level:

Urbanit = αt + γGeoi + εit (14)

Urbanit equals one for pixel i if it is home to a county or prefecture seat in year t and zero

otherwise. The geography vector Geo entails temperature, temperature2, precipitation,

precipitation2, elevation, ruggedness, distance from the coast, distance from the equator,

distance from major rivers, landform, dominant soil type, and lithology. Our unit of

analysis, the pixels, are 7.33 x 9.51 km in size. They are grid cells in an equal-area

Mollweide projection. In our main specification, the geographical variables are assumed

to be time-constant, while Section C.9 considers paleo data as far as available as a

robustness check.

In our first specification, we will follow the literature in estimating the linear

probability model eq. (14) with OLS. This allows us to test predictions 1a and 1b based

on the coefficient estimates and the goodness of fit of the model. If geography plays a

larger role in determining the location of county rather than prefecture seats, we should

see larger and more significant γ coefficients as well as a higher R2 for county seats

rather than prefecture seats.

While being the standard benchmark, OLS comes with two main drawbacks in our

setting: (i) It does not capture a potentially highly nonlinear data generating process.

Settlement locations might be determined by a complex interplay of various geographic

factors which would violate the linearity assumption. (ii) The high correlations between

different geographic determinants (see Table 1) might yield questionable ceteris paribus

interpretations.13

13For example, a rise in elevation by one kilometer comes with changes in other variables, such as
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In our second specification, we add these issues by resorting to random forest

algorithms from machine learning (Breiman, 2001). These prediction-oriented methods

do not produce coefficient estimates like parametric econometrics does but explore

patterns in the data in much larger complexity. Random forests are ensemble methods

of individual decision trees, where each tree generates predictions by splitting the sample

along its explanatory variables into increasingly homogeneous subgroups. In classification

random forests this splitting is based on Gini coefficients; in regression random forests

it is done based on the variance. Compared to other tree-based methods, the random

forest only considers a randomly drawn subsets of explanatory variables at each split.

This way the entire set of trees, or forest, comes up with a larger variety of solutions,

a better bias-variance trade-off and an adequate solution in our application (Kuhn and

Johnson, 2013). Given the pattern recognized in the data set, the algorithm splits the

sample of all pixels based on their geographic characteristics, thereby predicting which

pixels are to be classified as hosting a county (or prefecture) seat.14

After identifying where cities locate in the first place, we investigate to what extent

the mechanism choosing the initial location differs from the one driving persistence. Does

local geography explain how long administrative seats persist in their location?

Yi = α + γGeoi + εi (15)

eq. (15) regresses the number of years Y that pixel i hosts an administrative city on

the geography vector. For simplicity we subset the years to those considered in the 214

baseline cross-sections and the pixels to those grid cells that ever hosted a city in any of

the examined years.

3.3.2 Indirect Effects of Geography

According to Prediction 1b of Theorem 1, first-nature geography should have a much

smaller effect on the location of prefecture seats than on that of county seats. Instead,

the network position, in particular expressed as centrality within the prefecture, should

play a large role. Based on the theoretical framework, we expect prefecture seats to

minimize the travel distance to the county seats in their territory (see eq. (5)) and

overall pixels in the prefecture weighted by military relevance (see eq. (5)).

temperature, ruggedness etc. Estimating and interpreting the influence of one geographical variable
while keeping the rest constant might be driven by outliers and might potentially lead to unrealistic
results.

14Our classification random forests consist of 500 trees each. Within the trees each node employs
three out of the ten geographic determinants for splitting. Observations are sampled with replacement.
To generate an R2 we also run regression random forests using the same data which splits the sample
based on the variance instead of the Gini coefficient.
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In the first estimations we focus on the network between cities. For each city j

in prefecture p we compute the total distance D to all other cities in that prefecture.

Distance is measured in terms of travel time derived via Tobler’s (1993)’s hiking function

which takes the topography into account.

lnDjpt = αt + β PrefectureSeatjpt + γpt + εjpt (16)

As eq. (16) illustrates, we regress the natural logarithm of that distance on a

prefecture seat indicator and prefecture-fixed effects.

The second stage then considers prefecture seat locations within prefectures overall,

irrespective of where the county seats are.

lnCipt = αt + β PrefectureSeatipt + γpt + εit (17)

Cit is the centrality of a pixel measured as the travel time according to Tobler’s

(1993) hiking function between pixel i and the respective prefecture’s centroid in year

t.15 PrefectureSeatipt is an indicator that equals one if the pixel hosts the prefecture

seat and zero otherwise.

In a third stage we set up an unsupervised machine learning algorithm that imitates

the theoretical framework’s assumptions on how prefecture seats are placed throughout

the empire. It begins with an initial random allocation of prefecture seats and then

moves them around based on the location of county seats and military threat levels.

Once the iterations reach a stability threshold, the algorithm stops and we compare

artificial and actual prefecture seats.

The entire estimation strategy on direct and indirect effects comes as a series of

cross-sectional rather than panel estimations.16 With those independent regressions we

introduce a level of flexibility in the identified causal mechanism over time that would

otherwise be restricted to some degree.

15Robustness checks in Section C.11 and Section C.12 repeat eq. (16) and eq. (17) with Euclidean
distances and travel time derived via a modified version of Tobler’s (1993) hiking function by Márquez-
Pérez et al. (2017).

16The baseline random forest approach runs on 214 cross-sections, i.e. going from 220 BCE until 1910
CE in ten year steps.
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4 Results

4.1 Regression Results for Direct Effects of Geography

Table 3 presents the OLS regression results of eq. (14), investigating the impact of local

geography on the location of county seats.17 We see that geography indeed plays a

role, confirming Prediction 1a. Throughout Chinese history, places with flatter terrain

and rivers nearby are more likely to host county seats. The impact of temperature and

distance from the coast seems to be time-varying, while higher elevation is associated

with a lower likelihood to host a county seat throughout the time period covered.18

When re-running the regression using prefecture seats rather than county seats, we

make three observations (see Table 4): (i) The signs of the geographical variables are

typically the same. (ii) But the coefficient estimates in the prefecture seat regressions

are much smaller and less often statistically significant. (iii) And the explanatory power

in terms of the adjusted R2 is markedly lower. This is in line with Prediction 1b that

prefecture seats are less strongly determined by local geographical factors than county

seats.

We take a closer look at the relative importance of the various geographical features

with the random forest classification. While these machine learning methods do not

yield coefficient estimates, they produce variable importance measures according to how

much the variables contribute to the reduction of the gini coefficient. This allows us to

rank geographic determinants in their importance for predicting settlement locations.

Figure 4 displays the variable importance ranks for the determination of the county

seats, with the most important variable receiving a rank of one and the least important

one receiving a rank of ten. Elevation, a variable that also remained highly statistically

significant in our OLS for most of the dynastic period, receives the highest importance

and landform the lowest importance throughout most of imperial China.19 Some

variables change importance ranks from time to time but often maintain similar orders

for long periods.

The results for prefecture seat locations in Figure 5 are more volatile, only agreeing

17Throughout the paper, we use the term local geography regression as a synonym for regressions
estimating the direct effects of geography.

18Many of the changes in coefficient estimates over time reflect the evolution of the parameters in our
model and the degree to which institutional developments alter the causal framework between geography
and city locations (see Section C.2).

19Dominant soil type, landform, and lithology occupying the lowest ranks throughout all years might
be related to them being categorical whereas the other variables are continuous.
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Table 3: Local Geography Regressions (County Seats)

200 BCE 1 CE 200 CE 400 CE 600 CE 800 CE 1000 CE 1200 CE 1400 CE 1600 CE 1800 CE
Intercept 0.04∗∗∗ 0.07∗∗∗ 0.07∗∗∗ 0.09∗∗∗ 0.12∗∗∗ 0.15∗∗∗ 0.09∗∗∗ 0.08∗∗∗ 0.10∗∗∗ 0.12∗∗∗ 0.12∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.02) (0.02)
Dist. Equator −0.07∗∗∗ −0.10∗∗∗ −0.10∗∗∗ −0.14∗∗∗ −0.20∗∗∗ −0.26∗∗∗ −0.19∗∗∗ −0.17∗∗∗ −0.18∗∗∗ −0.23∗∗∗ −0.21∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.02) (0.02) (0.03) (0.03)
Dist. Coast −0.00 −0.05∗∗∗ 0.01 0.07∗∗∗ 0.13∗∗∗ 0.13∗∗∗ 0.12∗∗∗ 0.11∗∗∗ 0.04∗∗ 0.07∗∗∗ 0.05∗∗∗

(0.01) (0.02) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Dist. River 0.01 −0.05 −0.05 −0.14∗∗∗ −0.26∗∗∗ −0.14∗∗∗ −0.06 −0.03 −0.05 −0.06 −0.03

(0.03) (0.03) (0.03) (0.03) (0.03) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
Ruggedness −0.07∗∗∗ −0.08∗∗∗ −0.08∗∗∗ −0.12∗∗∗ −0.09∗∗∗ −0.16∗∗∗ −0.15∗∗∗ −0.14∗∗∗ −0.12∗∗∗ −0.14∗∗∗ −0.17∗∗∗

(0.01) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
Temperature 0.05∗∗∗ 0.09∗∗∗ 0.05∗∗∗ −0.01 −0.04∗ −0.15∗∗∗ −0.08∗∗∗ −0.06∗∗∗ −0.06∗∗∗ −0.08∗∗∗ −0.08∗∗∗

(0.01) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02)
Temperature2 −0.09∗∗ −0.02 −0.09 −0.16∗∗ 0.32∗∗∗ 0.53∗∗∗ 0.28∗∗∗ 0.20∗∗ 0.10 −0.06 −0.02

(0.05) (0.06) (0.06) (0.07) (0.09) (0.11) (0.10) (0.10) (0.09) (0.11) (0.11)
Precipitation −0.19∗∗∗ −0.35∗∗∗ −0.19∗∗∗ −0.07∗∗ −0.25∗∗∗ −0.10∗∗ 0.01 0.03 −0.05 −0.02 −0.03

(0.03) (0.03) (0.03) (0.03) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
Precipitation2 0.34∗∗∗ 0.64∗∗∗ 0.33∗∗∗ 0.13∗ 0.44∗∗∗ 0.14 −0.06 −0.11 0.04 −0.02 −0.00

(0.06) (0.07) (0.07) (0.07) (0.08) (0.09) (0.08) (0.08) (0.08) (0.08) (0.09)
Elevation −0.38∗∗∗ −0.32∗∗∗ −0.38∗∗∗ −0.71∗∗∗ −1.19∗∗∗ −1.32∗∗∗ −1.10∗∗∗ −0.94∗∗∗ −0.82∗∗∗ −1.09∗∗∗ −0.93∗∗∗

(0.07) (0.10) (0.09) (0.09) (0.10) (0.12) (0.11) (0.11) (0.11) (0.13) (0.12)
Soil Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Adj. R2 0.03 0.04 0.03 0.02 0.03 0.03 0.03 0.02 0.02 0.02 0.02
Num. obs. 86, 257 86, 257 86, 257 86, 257 86, 257 86, 257 86, 257 86, 257 86, 257 86, 257 86, 257
Notes: The table reports the regression results of eq. (14) using the county seats. Heteroskedasticity-robust standard
errors are in parentheses (∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1). Distances in 10,000 km, Ruggedness in Ruggedness Index
x 10,000,000, Temperature in 100◦C, Precipitation in 10 m, Elevation in 100 km. Coefficient estimates on categorical
soil variables - dominant soil type, landform, lithology - omitted from the table.

Table 4: Local Geography Regressions (Prefecture Seats)

200 BCE 1 CE 200 CE 400 CE 600 CE 800 CE 1000 CE 1200 CE 1400 CE 1600 CE 1800 CE
Intercept 0.01∗∗ 0.01∗∗∗ 0.01∗ 0.03∗∗∗ 0.03∗∗∗ 0.05∗∗∗ 0.04∗∗∗ 0.06∗∗∗ 0.03∗∗∗ 0.03∗∗∗ 0.03∗∗∗

(0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Dist. Equator −0.01∗∗ −0.01∗∗ −0.01 −0.04∗∗∗ −0.06∗∗∗ −0.08∗∗∗ −0.08∗∗∗ −0.10∗∗∗ −0.05∗∗∗ −0.05∗∗∗ −0.05∗∗∗

(0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.01) (0.01) (0.01)
Dist. Coast −0.00 −0.00 0.01 0.03∗∗∗ 0.04∗∗∗ 0.02∗∗ 0.03∗∗∗ 0.04∗∗∗ 0.02∗∗ 0.02∗∗ 0.01

(0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Dist. River 0.00 0.01 0.00 −0.03∗ −0.04∗∗ −0.06∗∗∗ −0.04∗ −0.05∗∗ −0.03∗ −0.04∗∗ −0.04∗

(0.01) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Ruggedness −0.01∗∗ −0.02∗∗∗ −0.02∗∗∗ −0.03∗∗∗ −0.02 −0.06∗∗∗ −0.04∗∗ −0.04∗∗ −0.07∗∗∗ −0.06∗∗∗ −0.04∗∗∗

(0.00) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.02) (0.01) (0.02) (0.02)
Temperature −0.00 0.01 0.01∗∗ −0.00 −0.01 −0.06∗∗∗ −0.04∗∗∗ −0.06∗∗∗ −0.02 −0.01 −0.02∗

(0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Temperature2 0.00 −0.03 −0.03 −0.04 −0.07∗ 0.18∗∗∗ 0.02 −0.01 −0.07 −0.07 −0.02

(0.02) (0.03) (0.03) (0.04) (0.04) (0.06) (0.06) (0.06) (0.05) (0.06) (0.05)
Precipitation −0.02∗∗ −0.04∗∗∗ −0.03∗∗ −0.07∗∗∗ −0.04∗ −0.05∗∗ −0.04∗ −0.04∗ −0.02 −0.04∗∗ −0.04∗

(0.01) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Precipitation2 0.03∗∗ 0.09∗∗∗ 0.05∗∗ 0.14∗∗∗ 0.07∗ 0.09∗∗ 0.06 0.07 0.02 0.07 0.06

(0.01) (0.02) (0.03) (0.04) (0.04) (0.04) (0.05) (0.05) (0.04) (0.04) (0.04)
Elevation −0.04∗∗ −0.03 −0.00 −0.12∗∗ −0.30∗∗∗ −0.30∗∗∗ −0.34∗∗∗ −0.45∗∗∗ −0.06 −0.07 −0.15∗∗∗

(0.02) (0.03) (0.03) (0.05) (0.05) (0.06) (0.07) (0.07) (0.06) (0.06) (0.06)
Soil Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Adj. R2 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Num. obs. 86, 257 86, 257 86, 257 86, 257 86, 257 86, 257 86, 257 86, 257 86, 257 86, 257 86, 257
Notes: The table reports the regression results of eq. (14) using the prefecture seats. Heteroskedasticity-robust standard
errors are in parentheses (∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1). Distances in 10,000 km, Ruggedness in Ruggedness Index
x 10,000,000, Temperature in 100◦C, Precipitation in 10 m, Elevation in 100 km. Coefficient estimates on categorical
soil variables - dominant soil type, landform, lithology - omitted from the table.

in attributing the lowest value to landform. There appears to be no clear pattern, with
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Figure 4: Variable Importance in Classification Random Forests Linking Geography
and County Seat Location

the ordering of the top six variables reshuffled at high frequencies. We see that although

the random forest allows for much more complex interactions between the various

geographical features, they cannot link local geography and prefecture seat locations

through any recognizable pattern. In this way, the findings from random forests confirm

the OLS results about a more immediate impact of local geography on county rather

than prefecture seat locations.
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Figure 5: Variable Importance in Classification Random Forests Linking Geography
and Prefecture Seat Location

Let us proceed to look at the goodness of fit. The R2 in the OLS regression is very

low, with geography explaining very little of the variation in county seats (R2 of ≤ 0.04

in Table 3) and hardly anything of the variation in preference seats (R2 of ≤ 0.01 in
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Table 4). Yet, this low magnitude can to some extent be explained by the Modifiable

Areal Unit Problem (Fotheringham and Wong, 1991; Bailey and Gatrell, 1995). It is

known that in geo-spatial research the result may vary with the unit of analysis. This

is what happens in our case. We consider alternative resolutions, aggregating our 7.33

x 9.51 km baseline pixels by factors of 2, 3, 4 and 5, referred to as small, medium,

large, and very large respectively. Figure 6 illustrates the fraction of urban pixels that

are correctly classified as urban.20 We find again that (i) the predictive performance

increases with the pixel size, and that (ii) the share of correctly predicted county seats

always strongly exceeds that of the correctly predicted prefecture seats.21 Evaluating

the results based on R2 instead (see Figure C-2 in Appendix Section C.6) confirms these

conclusions.22
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Figure 6: Correctly Classified Urban Pixels in Classification Random Forests Linking
Geography and Settlement Location

Section C.5 confirms these insights by comparing the share of correctly classified

county and prefecture seats of the random forest classifier, using different resolutions.

Coarser resolutions also bring out a characteristic pattern along the time dimension

in the data. The pattern with which the share of correctly classified urban grid cells

sharply rises and falls is aligned with institutional change. Figure 7 marks the rise of

20Figure C-1 depicts the performance on rural pixels and on urban and rural pixels jointly.
21According to the results displayed in Section C.1, this pattern also holds when estimated via OLS.
22This is a classification problem, which is why we use classification random forest’s confusion matrices

to evaluate the algorithm’s ability to predict city locations. Deriving R2 values from regression random
forests, which split the sample based on the variance rather than the gini coefficient, is therefore
technically not correct.
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Figure 7: Correctly Classified Pixels in Classification Random Forests and the Rise of
Dynasties

new dynasties using vertical lines.23 Hence, the association between geography and

county seat locations changed with the institutions. Even though dynasties often kept

many of their predecessors’ institutional structures and spatial organization, institutional

conditions did not remain constant.24 And this is what these results reflect. Institutions

affect the causal framework between geography and urban settlement locations.25

Concerning changes over time, we also investigate the link between urban persistence

and geography. This means that we count in how many of the 214 baseline cross-sections

a pixel hosts a city and regress it on the geography vector (see eq. (15)).26 Judging

from the resulting R2 in Figure 8, not just the initial location but also the persistence

of county seats appears to be related to geography. The opposite holds for prefecture

seats. Local geography neither explains where they arise in the first place nor where

they persist over time.27

23Figure C-3 in Appendix Section C.6 is the corresponding plot using the R2.
24Institutional adjustments were often inspired by past dynasties, as contemporary neighbors were

too different to serve as inspiration, e.g. by being nomadic rather than sedentary (Mote, 1999).
25The pace of adjustment depends on the institutional change, which is more complex than a binary

distinction between dynasties founded by Han Chinese and those founded by non-Han peoples. The Yuan
dynasty founded by the Mongols in 1260 CE implemented around 71 percent of their spatial modifications
within the first 20 years, coinciding with a sharp drop in Figure 7. The Qing dynasty founded in 1644
CE by the Manchu - also non-Han - introduced only around two percent of their spatial adjustments in
the first 20 years (Mostern, 2011).

26We subset the sample to pixels that are urban in at least one of the years. Dropping zeros circumvents
the need for a Tobit model.

27Section C.10 confirms these findings via OLS regressions.
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Our baseline results about a higher importance of local geographical factors for county

rather than prefecture seats are robust to further robustness checks. Section C.3 confirms

the findings with logit and probit models and Section C.4 with spatial econometrics.

In Section C.8 we discuss alternative ways of dealing with the changing extent of the

empire over time, showing that the main results hold for alternative empire shapes. In

addition, in Section C.9 we supplement the analysis with historical geographical data,

taking inter alia into account how the Yellow river changed its course.

4.2 Regression Results for Indirect Effects of Geography

Given that prefecture seats are to a lesser extent determined by local geography, we

investigate the centrality argument to explain their location within a prefecture.

First focusing on the urban network, we estimate eq. (16). Figure 9 plots the

coefficient estimates and 95 percent confidence intervals from these cross-sectional

regressions. In line with our predictions, prefecture seats are significantly closer to other

cities within a prefecture than county seats are.28

28In Section C.11 we repeat the estimation with Márquez-Pérez et al.’s (2017) modified Tobler hiking
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Figure 9: Inter-City Distance and Administrative Status

Looking at the overall within-prefecture space, Figure 10 presents the regression

results of eq. (17).29 For all pixels in a prefecture, the natural logarithm of the distance

between pixel centroid and the centroid of the central pixel are regressed on a constant,

a prefecture seat dummy (which equals one if the pixel hosts the prefecture seat),

and prefecture-fixed effects. The results show that prefecture seats are on average

significantly closer to the centroid than other pixels. Prefecture seats are in many

years around 50 percent closer to the centroid than the average other pixel within the

prefecture is.30 Some prefecture borders are missing from the data in earlier years which

at least partly drives the estimates’ stronger fluctuations and lower precision in that

period.

Figure 11 illustrates the locations of geographic prefecture centroids, county and

prefecture seats for a subset of prefectures in the year 1500 CE. We can see that centrality

certainly plays a role. Many prefecture seats are rather close to the centroid marked by

the green cross. Yet, there are also exceptions and other strategic considerations might

function and in Section C.12 with Euclidean distances. The results are virtually the same.
29As in Figure 9, the red line denotes the coefficient estimate of interest and the grey area the respective

95 percent confidence intervals.
30In Section C.11 we repeat the estimation with Márquez-Pérez et al.’s (2017) modified Tobler hiking

function and in Section C.12 with Euclidean distances. The results are virtually the same.
31The selected prefectures are: Pingyang Fu, Ze Zhou, Huaiqing Fu, Weihui Fu, Lu Zhou, Qin Zhou,

Zhangde Fu, Liao Zhou, Guangping Fu, Shunde Fu, Fen Zhou and Daming Fu.
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Figure 10: Pixel Centrality and Administrative Status

be at work as well, potentially related to the locally varying threat levels.

Linking the estimations more closely to the theoretical framework, we design an

algorithm that simulates the hypothesized prefecture seat location optimization. The

Centroid County Seat Prefecture Seat

Figure 11: Selected Prefectures in 1500 CE 31
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mechanism is an unsupervised machine learning technique applying a concept similar

to k-means, but in a spatial setting. It begins by placing prefecture seats randomly

throughout the empire and then iteratively optimizes their position until it reaches

a stability threshold. The algorithm produces a spatial distribution similar to the

one we observe in the data, supporting the hypothesized theoretical mechanisms (see

Section C.13).

We conclude that prefecture seats are affected by geography only in an indirect way,

as predicted by our model. While geography determines both the location of county

seats, prefecture seats are chosen with the centrality argument in mind to minimize the

travel-time distance.

4.3 Results for Market Towns

Our main analysis considers the impact of geographical factors on administrative cities of

different rank, county and prefecture seats, for which we have location data throughout

imperial China. An appealing extension is to look at cities without administrative or

military status, so-called market towns which emerge during the second millennium CE

(Wu and Gaubatz, 2013). CHGIS provides cross-sectional data on market towns for 1820

CE when the Qing Dynasty ruled China. This allows us to conduct a comparison of the

three types of cities at that time, which was a decisive period of Chinese urbanization

and saw the establishment of more cities than any other era since Han (Wu and Gaubatz,

2013). Yet, the following results come with the caveat that it is a snapshot from one

period and that the spatial distribution of market towns may have looked different under

earlier dynasties.32

Figure 12 illustrates how in 1820 CE market towns far outnumber administrative

settlements. It is obvious that in that year China had long past the times in which

administrative cities represented roughly the entire urban landscape. There are 8,659

market towns in that year of which many are based in the heartland of imperial China.

In comparison, there are only 301 prefecture and 1859 county seats.

We re-run our random forest models concerning the direct effects of geography

on city locations, applied separately to the three types of cities using the formerly

discussed five different pixel sizes.33 Figure 13 presents the fraction of correctly classified

32The empire’s population size tripled between 1680 and 1850 CE (von Glahn, 2016).
33The imperial borders used in this section are different from the ones in the previous sections. The

here presented results on county and prefecture seat locations, therefore, slightly differ from the above
discussed output.
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County Seat Market Town Prefecture Seat

Figure 12: Administrative and Market Towns in 1820 CE

urban grid cells and shows a very clear pattern: Market towns are even more strongly

determined by local geography than county seats, which in turn are more strongly
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Figure 13: Correctly Classified Urban Pixels in 1820 CE
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influenced by geography than prefecture seats.34 This ranking persists at all levels of

data aggregation, with the explanatory power of the geographical factors in all three

cases higher at coarser resolutions. In fact, at the coarsest resolution, we can correctly

classify around 80 percent of market towns pixels using local geography, compared

to slightly over 60 percent of county seat locations and quasi no prefecture seat grid cells.35

We conclude that the inclusion of non-administrative market allows us to extend our

previous insights to a third hierarchical level: The higher the administrative status of a

city, the lower the influence of local geographical conditions.

4.4 Comparison to Europe

We complete our historical analysis by a comparison of Chinese and European cities.

Figure 14 illustrates the European cities documented by Bairoch et al. (1988) based on

a minimum population of 5,000 inhabitants. This data set is typically used in studies

of European urban history, see Jedwab et al. (2020). The European cities are available

in the years 800, 900, 1000, 1200, 1300, 1400, 1500, 1600, 1700, 1750, 1800, and 1850.

To facilitate our comparison with Europe, we transform the Chinese data and create a

corresponding grid in which a cell is set to one if it hosted at least one county seat or

prefecture seat in any of these years.

Figure 15 shows the fraction of correctly classified urban pixels in classification

random forests of the location of a European or Chinese city on the geographical

features, using various levels of pixel aggregation.36 We see that geographical features

can explain the location of historical European cities to a lesser extent than that of

Chinese county seats, yet more than that of Chinese prefecture seats.37

In contrast to China, Europe was politically highly fragmented at that time.

Institutions were much more localized than in China, with independent city states

constraining the formation of centrally-governed nations (Jedwab et al., 2020; Acemoglu

and Robinson, 2019). Geographical factors such as access to the sea and to rivers

have been shown to have contributed to the formation of European cities (Bosker

and Buringh, 2017; Bosker et al., 2008). Institutions certainly played a role, but at a

more local level and with a larger variance in regional institutional settings and cities’

34Figure C-15 presents the corresponding R2 and Figure C-16 the variable importance.
35Note that we estimate the locations of different city types in separate estimations, as in the baseline

approach.
36Figure C-17 in Appendix Section C.15 plots the respective R2.
37The geography differs from the baseline estimations in that it omits the three soil-related variables

landform, dominant soil type, and lithology which are derived from an Asia-specific data set.
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Figure 14: European Cities (800 CE - 1850 CE)

administrative tasks, which might explain why the magnitude of our European results

lies between that of Chinese county and top-down prefecture seats.
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5 History dependence

Our results so far suggest an important role for geography and institutional factors in

explaining the location and status of historical cities. This leads to the question of how

relevant these insights are today. Our historical coverage period ends with the downfall

of the Chinese empire in 1911. Since then, Chinese urban development has undergone

enormous changes; in particular, China’s integration into world markets in the last

decades fueled the rise of coastal cities (Ma, 2002; Anderson and Ge, 2005).

First, we take a look at political path dependence. We examine the 29 current

province and autonomous region capitals that fall into the territory of former Chinese

empires observed in CHGIS. 28 ouf of these 29 current regional capitals acted as a

prefecture seat at some point in historical times.38 As Figure 16 shows that more than

half of them were already prefecture seats in the fifth century CE.
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Figure 16: Importance of Modern Provincial Capitals in Chinese History

We then turn to look at economic path dependence. Do modern cities which hosted a

county and prefecture seat during imperial times show higher population and economic

activity than their peers? In the following, we work with 1,841 Chinese agglomerations

with more than 50,000 inhabitants in 2015 as defined by the Global Human Settlement

Layers (Florczyk et al., 2019).

38More precisely, the pixels of the location of the historical prefecture seats fall within the
agglomeration of the modern city as defined by the GHS Urban Centre Database (Florczyk et al., 2019).
The location of the 29 modern regional capitals are illustrated in Figure C-18 in Section C.16.
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Table 5: Imperial History and Population Size

OLS Median Regressions
Pop. Log(Pop.) Pop. Log(Pop.)

Intercept 145, 172.74∗∗∗ 11.55∗∗∗ 86, 167.41∗∗∗ 11.36∗∗∗

(10, 232.14) (0.02) (2, 208.90) (0.03)
Historic Prefecture Seat 502, 237.18∗∗∗ 0.71∗∗∗ 70, 499.65∗∗∗ 0.60∗∗∗

(103, 508.56) (0.06) (8, 604.41) (0.06)
Historic County Seat 56, 115.67∗∗∗ 0.24∗∗∗ 23, 772.08∗∗∗ 0.24∗∗∗

(18, 161.79) (0.04) (4, 877.45) (0.05)

Adj. R2 0.02 0.10
Num. obs. 1, 841 1, 841 1, 841 1, 841

Notes: Heteroskedasticity-robust standard errors in parentheses (∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1). Agglomerations’
shapes and population refer to the year 2015. Omits four agglomerations with zero nighttime light emissions in either
of the three data sets.

In Table 5 we regress the (log) population size of these cities on a historic prefecture

seat and a county seat indicator. The prefecture (county) seat indicator equals one for

all agglomerations that held prefecture (county) seat status at any point in the past.39

We see that cities which were a prefecture seat at one time in the past are now 71

percent more populous than others which never had that status. In absolute terms the

population bonus is on average around 502,000 people. For cities which were county

seats once, the corresponding to difference to non-county seats is 24 percent. These

figures are more subdued for median rather than OLS regressions because they are

driven to a lesser extent by the largest agglomerations.40 But the effects remain highly

statistically significant and sizable.41

Looking at economic outcomes, we work with satellite data of nighttime lights as a

proxy for local economic activity (Henderson et al., 2012; Donaldson and Storeygard,

2016). In Table 6, we regress the log total nighttime light emissions of the 1,841 Chinese

agglomerations on a historic prefecture seat and a county seat indicator.42 We can see

39We define the two indicators to be mutually exclusive. County seats that became prefecture seats
at some point are only counted as prefecture seats in these regressions.

40Most countries’ city size distributions are characterized by a lognormal body and a Pareto distributed
upper tail (Düben and Krause, 2020), which explains the difference between the mean and the median
effects.

41We do not investigate the population size of cities in imperial times because of severe measure error in
the historical censuses. Imperial administrations started collecting data on its subjects at an early stage,
with the Qin and Han dynasties (221 BCE - 220 CE) maintaining detailed population registers and even
listing property. However, the population had a strong incentive the misreport, as the administration
used the data to draw people for military service. The reliability of censuses also changed over time.
Population registers e.g. became a local local responsibility during the Qing dynasty (1644 - 1911 CE),
leading to severe declines in quality (von Glahn, 2016; Major and Cook, 2017).

42The nighttime lights refer to the 2013 satellite F18 DMSP OLS stable lights image (Elvidge et al.,
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Table 6: Imperial History and Nighttime Light Emissions

OLS Median Regressions
Stable Corrected VIIRS Stable Corrected VIIRS

Intercept 7.11∗∗∗ 7.18∗∗∗ 6.57∗∗∗ 7.18∗∗∗ 7.19∗∗∗ 6.66∗∗∗

(0.04) (0.05) (0.06) (0.04) (0.04) (0.06)
Historic Prefecture Seat 0.80∗∗∗ 0.90∗∗∗ 1.12∗∗∗ 0.51∗∗∗ 0.53∗∗∗ 0.74∗∗∗

(0.07) (0.08) (0.09) (0.07) (0.08) (0.09)
Historic County Seat 0.41∗∗∗ 0.40∗∗∗ 0.50∗∗∗ 0.27∗∗∗ 0.26∗∗∗ 0.33∗∗∗

(0.06) (0.06) (0.08) (0.06) (0.07) (0.08)

Adj. R2 0.08 0.08 0.09
Num. obs. 1, 841 1, 841 1, 841 1, 841 1, 841 1, 841

Notes: Heteroskedasticity-robust standard errors in parentheses (∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1). Agglomerations’
shapes refer to the year 2015, the stable and corrected light to the last available year (2013) and the VIIRS light data
to 2016. Omits four agglomerations with zero nighttime light emissions in either of the three data sets.

that modern cities that used to be prefecture (county) seats are on average 80 (40) to

112 (50) percent brighter than cities without a historic political status. These results

decrease in magnitude when using median rather than OLS regressions.

Table 7: Imperial History, Nighttime Light Emissions, and Population Size

OLS Median Regressions
Stable Corrected VIIRS Stable Corrected VIIRS

Intercept −5.06∗∗∗ −7.15∗∗∗ −8.24∗∗∗ −4.24∗∗∗ −6.56∗∗∗ −7.34∗∗∗

(0.17) (0.18) (0.24) (0.13) (0.13) (0.21)
Historic Pref. Seat 0.06 0.02 0.21∗∗∗ −0.07∗ −0.08∗ 0.06

(0.04) (0.04) (0.05) (0.04) (0.04) (0.05)
Historic County Seat 0.16∗∗∗ 0.11∗∗∗ 0.19∗∗∗ 0.01 −0.01 0.06

(0.04) (0.04) (0.05) (0.04) (0.04) (0.05)
Log(Population) 1.05∗∗∗ 1.24∗∗∗ 1.28∗∗∗ 1.00∗∗∗ 1.20∗∗∗ 1.22∗∗∗

(0.01) (0.02) (0.02) (0.01) (0.01) (0.02)

Adj. R2 0.71 0.74 0.64
Num. obs. 1, 841 1, 841 1, 841 1, 841 1, 841 1, 841

Notes: Heteroskedasticity-robust standard errors in parentheses (∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1). Agglomerations’
shapes refer to the year 2015, the stable and corrected light to the last available year (2013) and the VIIRS light data
to 2016. Omits four agglomerations with zero nighttime light emissions in either of the three data sets.

In Table 7 we repeat the regressions from Table 6 but control for population. This

reveals that the higher total luminosity of historical prefecture and county seats is

to a large extent driven by their higher population without robust evidence of higher

2014), its top coding corrected version by Bluhm and Krause (2018), and the 2016 VIIRS nighttime lights
(Earth Observation Group, NOAA National Centers for Environmental Information, 2016; Elvidge et al.,
2017). For a comparison of the different light images, see Bluhm and Krause (2018) and Düben and
Krause (2020).
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productivity.43 We summarize our findings on economic history dependence as follows:

Historical county and prefecture seats are significantly more populous than other cities,

which again makes them more economically active.

6 Conclusion

In this paper we shed light on the interplay between geography and institutions for

the emergence of cities. We exploit a unique historical data set, which not only

contains the location but also the hierarchical status of cities in imperial China from

221 BCE to 1911 CE. The Chinese empire forms a particularly compelling setting for

investigating this research question as it is geographically diverse, has a long history

of centralized governance, experienced only moderate foreign interference compared to

many other parts of the world, and displays a strong path dependence in institutions

and spatial organization. To elucidate the interplay between geography, institutions and

city location, we build a stylized model and conduct an empirical analysis using both

econometric inference and machine learning-based prediction techniques.

Our results suggest that the direct effect of geography on a city’s location decreases

with that settlement’s status in the institutional hierarchy. Market towns, places without

government responsibilities, exhibit the closest association with geographic features

within their immediate surroundings. A less dominant but still considerable effect can

be found for county seats, low-ranking local administrations. Prefecture seats, important

regional political centers, show no sizeable connection to local geography. Instead we

find prefecture seats to locate at systematically central and strategic positions within the

administrative regions they govern. In addition to this cross-sectional variation between

cities of different political status, we see institutional change along the time dimension,

i.e. the rise and fall of dynasties, reflected in the role geography had in placing urban

settlements throughout the empire. And we observe geography to not just determine the

initial location but also persistence of lower ranking cities.

Despite major institutional developments over the past century our findings bear high

relevance for China’s urban landscape nowadays. We find evidence both of political and

economic path dependence, with former prefecture exhibiting much higher levels of both

population and nighttime light emissions than other cities. In addition to providing

new insights into the interplay of geography and institutions in the hierarchy of cities in

general, our paper also helps to shed light on the origins of the modern urban landscape.

43Figure C-19 provides scatter plots illustrating further insights regarding this association.
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A Theoretical Framework: Proofs

A.1 Special Cases

The main paper lays out the emperor’s utility maximization problem as

max
Nc,Np,locations

U
[ Nc∑
c=1

Nic∑
i=1

(1− τDci)λPi︸ ︷︷ ︸
+

,

Np∑
p=1

Ncp∑
c=1

Dpc︸ ︷︷ ︸
−

,

Np∑
p=1

Nip∑
i=1

(DpiMi)
m

︸ ︷︷ ︸
−

]
((A-1))

subject to the county seat constraints

Gc + Ec ≤
Nic∑
i=1

(1− τDci)λPi for 1 ≤ c ≤ Nc ((A-2))

Ec ≥ 0 for 1 ≤ c ≤ Nc ((A-3))

and prefecture seat constraints

Gp ≤
Npc∑
c=1

(Ec − τDpcEc) +

Np∑
q 6=p

(Epq − τDpqEpq) for 1 ≤ p ≤ Np ((A-4))

No closed-form solution for the number of location of the county and prefecture seats

is possible. But it is insightful to consider special cases which allow us to further simplify

the expressions involved.

Assumptions 4. All county seats carry the same cost Gc and they all export the same

amount Ec to the prefecture seats

Gc = Ḡ for 1 ≤ c ≤ Nc ((A-5))

Ec = Ē for 1 ≤ c ≤ Nc ((A-6))

Imposing this additional assumption allows us to write the aggregate-level resources

constraint

Nc∑
c=1

(Gc + Ec) ≤
Nc∑
c=1

Nic∑
i=1

(1− τDci)λPi ((A-7))

as

i



Nc · (Ḡ+ Ē) ≤
Ni∑
i=1

(1− τDci)λPi ((A-8))

Nc ≤
∑Ni

i=1(1− τDci)λPi

Ḡ+ Ē
((A-9))

Note that this is not a closed-form solution for Nc as the distance Dci between cell

i and prefecture seat c depends on it. Yet, it is independent from considerations at the

prefecture seat level and illustrates the trade-off: A higher population Pi will make it

worthwhile to have more county seats, by boosting tax revenues, while higher expenses

in the form of Ḡ and Ē will lead to fewer county seats.

At the prefecture seat level, Assumption 4 allows to simplify

Np∑
p=1

Gp ≤
Np∑
i=1

Npc∑
i=1

(Ec − τDpcEc) +

Np∑
p=1

Np∑
q 6=p

(Epq − τDpqEpq) ((A-10))

to

NpḠ ≤ NpĒ

Npc∑
i=1

(1− τDpc) +NpĒ

Np∑
q 6=p

(1− τDpq) ((A-11))

Ḡ ≤ Ē
(Npc∑

i=1

(1− τDpc) +

Np∑
q 6=p

(1− τDpq)
)

((A-12))

The number Np of prefecture seats can be determined implicitly from this equation. It

balances the costs of each prefecture seat with the receipts, net of all transport costs.

A.2 Proof of Theorem 1

We can show the effects described in Theorem 1 based on the equations laid out before.

(a) In areas with favorable geography, there are more county seats.

Proof: By Assumption 1, favorable geography Ai in cell i increases population Pi

in this cell. The maximizing problem eq. (8) depends negatively on the population-

weighted travel-time distance DciPi between cell i and the nearest county seat.

Decreasing the distance to populous cells has the strongest effect on utility, leading

to more county seats in areas with favorable geography.

ii



(b) The location of prefecture seats is determined to a lesser extent and only indirectly

by the presence of geographical features.

Proof: In contrast to the direct geographical effect of geography on county seat

density via population, the prefecture seat locations are chosen primarily on military

considerations. While favorable geography Ai increases Pi according to Assumption

1, the latter term in eq. (8) does not include Pi. There is only an indirect channel

through which geography affects the location of prefecture seats: County seat density

is determined by favorable geography according to (a), and according to eq. (13), it

is advantageous for prefecture seats to locate close to county seats to minimize the

transport costs of the transfers Ec.

(c) There are more prefecture seats per county seat in regions that are prone to military

invasion.

Proof: Military threats affect the location of prefecture seats directly and that of

county seats only indirectly. A military threat Mi in cell i has a negative effect on

utility in eq. (8), which is reinforced by the non-linearity of m > 1. It can only be

compensated by decreasing the distance Dip to the nearest prefecture seat. This leads

to an increase in the number of prefecture seats, while the number of county seats

will either stay the same or might decrease through an indirect effect: According to 1,

the total threat level increases in response the increase in Mi, decreasing population

Pi. Following the mechanism discussed in (a), a decreased population leads to fewer

county seats, reinforcing the result that there are more prefecture seats per county

seat in regions that are prone to military invasion.

(d) If the population grows at a higher rate than the costs of maintaining county seats,

the optimal number of county seats will increase.

Proof: According to eq. (8), the optimal number Nc of county seats will always be

Ni, but it is constrained by the financing restrictions eq. (9) and eq. (10) for each

county seat. If Pi increases at a higher rate than Gc, the aggregate budget constraint

eq. ((A-7)) does not bind anymore. Resources for establishing additional county seats

are then available.
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B Additional Information on Geographical Data

In this part of the Appendix, we present additional information on the data used in our

empirical analysis. Table B-1 provides the detailed data sources of the geographical

variables. Table B-2, Table B-3 and Table B-4 contain the summary statistics of,

respectively, the dominant soil type, landform, and lithology.

Table B-1: Geography Data Sources

Variable Source Original Format Derivations

Distance from equator Own computations Raster (5 arc

minutes)

Distance calculation between pixel

centroid and equator using latitude

Distance from coast Wessel and Smith (1996, 2017) Polygon Distance calculation between land

pixel centroid and centroid of

nearest ocean pixel

Distance from river Natural Earth (2019) Spatial lines Distance calculation between pixel

centroid and nearest river’s spatial

line

Ruggedness Nunn and Puga (2012) Raster (30 arc

seconds)

Grid cells containing index

measuring elevation difference

between grid cells in mm aggregated

to 5 arc minute level using averages

Temperature Matsuura and Willmott (2018a) Raster (30 arc

minutes)

Averages of monthly temperature

data from 1900 - 1950 disaggregated

to 5 arc minute level using bilinear

interpolation

Precipitation Matsuura and Willmott (2018b) Raster (30 arc

minutes)

Averages of annual precipitation in

mm from 1900 - 1950 disaggregated

to 5 arc minute level using bilinear

interpolation

Elevation Danielson and Gesch (2011) Raster (7.5 arc

seconds)

Grid cells aggregated to 5 arc

minute level using averages

Dominant soil type Dijkshoorn et al. (2008) Polygon Polygons converted to grid cells

Landform Dijkshoorn et al. (2008) Polygon Polygons converted to grid cells

Lithology Dijkshoorn et al. (2008) Polygon Polygons converted to grid cells

Notes: Regressions use this data converted to an equal-area Mollweide projection. The average monthly temperature

does not entail more information on the time dimension than average annual precipitation does. Both variables sum up

observations from 612 months between 1900 and 1951. In the case of temperature, we then divide that sum by 612 and

in the case of precipitation by 51. Cumulating precipitation measured in mm over a year makes sense, while cumulating

temperature measured in degrees Celsius does not.
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Table B-2: Dominant Soil Summary Statistics

Abbreviation Full Name Frequency Abbreviation Full Name Frequency

ACf ferric acrisols 2682 HSs terric histosols 42

ACh haplic acrisols 5189 KSh hapic kastanozems 993

ACp plinthic acrisols 104 KSk caleic kastanozems 289

ACu humic acrisols 3649 KSl luvic kastanozems 866

ALf ferric alisols 201 LP leptosols 53

ALh haplic alisols 3271 LPd dystric leptosols 69

ALp plinthic alisols 78 LPd dystric leptosols 69

ANh haplic andosols 46 LPe eutric leptosols 1807

ANu umbric andosols 4 LPi gelic leptosols 3573

ARb cambic arenosols 830 LPk rendzic leptosols 678

ARc calcaric arenosols 790 LPm mollic leptosols 1651

ARh haplic arenosols 1213 LVa albic luvisols 696

ATa aric anthrosols 46 LVg gleyic luvisols 1084

ATc cumulic anthrosols 5691 LVh haplic luvisols 12405

ATf fimic anthrosols 57 LVj stagnic luvisols 22

CHg gleyic chernozems 193 LVk calcic luvisols 975

CHh haplic chernozems 517 LVx chromic luvisols 815

CHk calcic chernozems 749 LXa albic lixisols 8

CHl luvic chernozems 227 LXf ferric lisols 167

CLh haplic calcisols 481 NTu humic nitosols 89

CLl luvic calcisols 424 PDd dystric podzoluvisols 91

CLp petric calcisols 53 PDj stagnic podzoluvisols 2

CMc calcaric cambisols 5682 PHc calcaric phaeozems 599

CMd dystric cambisols 3308 PHg gleyic phaeozems 955

CMe eutric cambisols 1318 PHh haplic phaeozems 2673

CMg gleyic cambisols 451 PHj stagnic phaeozems 91

CMi gelic cambisols 301 PLd dystric planosols 76

CMo ferralic cambisols 469 PLe eutric planosols 552

CMu humic cambisols 20 RGc calcaric regosols 1559

CMx chromic cambisols 611 RGd dystric regosols 626

FLc calcaric fluvisols 3987 RGe eutric regosols 695

FLe eutric fluvisols 350 RK rock, rock outcrop 177

FLs salic fluvisols 695 SC solonchaks 1

FP fishpond 18 SCg gleyic solonchaks 46

FRh heplc ferralsols 252 SCh haplic solonchaks 192

FRx xanthic ferralsols 146 SCk calcic solonchaks 107

GG glaciers, ice 139 SCm mollic solonchaks 233

GLe eutric gleysols 125 SCn sodic solonchaks 7

GLi geic gleysols 28 SCy gypsic solonchaks 55

GLk caleic gleysols 219 SNg gleyic solonetz 103

GLm molic gleysols 1413 SNh haplic solonetz 3

GLt thionic gleysols 12 SNk calcic solonetz 2

GRh hapic greyzems 618 ST salt flats 323

GYh heplc gypsisols 36 UR urban areas 28

GYk calcic gypsisols 801 VRd distric vertsols 71

GYl luvic gypsisols 765 VRe eutric vertsols 302

GYp petric gypsisols 1415 VRk calcic vertsols 28

HSf fibric histosols 3 WR inland water, lakes 701

Notes: The frequency refers to the number of pixels in the baseline setting, which are 7.33 x 9.51 km

in size.
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Table B-3: Landform Summary Statistics

Abbreviation Full Name Frequency Abbreviation Full Name Frequency

LP plain 37626 SP dissected plain 556

LP wet plain wet 104 TH high-gradient hill 2988

SH medium-gradient hill 28235 TM high-gradient mountain 14745

SM medium-gradient mountain 1302 WR inland water, lakes 701

Notes: The frequency refers to the number of pixels in the baseline setting, which are 7.33 x 9.51 km in size.

Table B-4: Lithology Summary Statistics

Abbr. Full Name Freq. Abbr. Full Name Freq.

FP fishpond 18 SC4 shale 6198

GG glaciers, ice 139 SC5 ironstone 347

IA acid igneous rock 45 SC7 142

IA1 granite 13301 SO1 limestone, other carbonate rocks 6195

IA2 grano-diorite 37 SO2 marl and other mixtures 661

IA4 rhyolite 32 SO3 coals, bitumen and related rocks 238

IB2 basalt 938 ST salt flats 323

IB3 dolerite 4 UA1 redeposited natural material 11

II1 andesite, trachyte, phonolite 760 UE eolean 14

II2 diorite-syenite 51 UE1 loess 12898

IP2 volcanic scoria/ breccia 137 UE1/UR1 loess/ bauxite, laterite 51

IP4 ignimbrite 1500 UE2 sand 2711

MA acid metamorphic rock 20 UF fluvial 15037

MA1 quartzite 336 UF/UL fluvial/ lacustrine unconsolidated rock 511

MA1/SC2 quartzite/ sandstone, greywacke, arkose 71 UF/UM fluvial/ marine unconsolidated rock 155

MA2 gneiss, migmatite 1309 UF1 sand and gravel 150

MA3/MB1 slate, phyllite (pelitic rocks) 1885 UF2 clay, silt and loam 161

MA4/MB2 schist 677 UG glacial 243

MB1 slate, phyllite (pelitic rocks) 1877 UL lacustrine 1670

MB1/MB2 slate, phyllite (pelitic rocks)/ schist 2242 UL/UM lacustrine unconsolidated rock/

RK rock outcrop 177 marine unconsolidated rock 26

SC clastic sedimentary rock 885 UL2 silt and clay 6

SC1 conglomerate, breccia 792 UM marine unconsolidated rock 202

SC10 1 UM/UF marine unconsolidated rock/ fluvial 5

SC16 glacial sedimentary environments 459 UO organic 4

SC2 sandstone, greywacke, arkose 6300 UR urban areas 28

SC2/SC4 sandstone, greywacke, arkose/ shale 243 UR1 bauxite, laterite 1775

SC3 siltstone, mudstone, claystone 1558 WR lakes, permanent water 701

Notes: The frequency refers to the number of pixels in the baseline setting, which are 7.33 x 9.51 km in size.
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C Supplementary Empirical Results

Here we provide additional results and robustness checks to supplement the empirical

analysis in the paper.

C.1 Supplementary OLS Results

In Section 4.1, we discuss the effect of using increasingly larger pixels based on random

forest results. The following Table C-1 to Table C-8 confirm those findings with OLS,

comparing the effect on county and prefecture seats when increasingly larger pixels are

used. While county seats show a strong connection to local geography, such a clear link

does not exist for prefecture seats.

Table C-1: Local Geography Regressions (County Seats, Small Pixels)

200 BCE 1 CE 200 CE 400 CE 600 CE 800 CE 1000 CE 1200 CE 1400 CE 1600 CE 1800 CE

Intercept 0.15∗∗∗ 0.23∗∗∗ 0.18∗∗∗ 0.29∗∗∗ 0.36∗∗∗ 0.46∗∗∗ 0.22∗∗∗ 0.21∗∗∗ 0.25∗∗∗ 0.30∗∗∗ 0.28∗∗∗

(0.04) (0.05) (0.05) (0.05) (0.05) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06)

Dist. Equator −0.22∗∗∗ −0.30∗∗∗ −0.28∗∗∗ −0.46∗∗∗ −0.61∗∗∗ −0.79∗∗∗ −0.49∗∗∗ −0.48∗∗∗ −0.53∗∗∗ −0.61∗∗∗ −0.56∗∗∗

(0.06) (0.08) (0.08) (0.08) (0.09) (0.10) (0.10) (0.10) (0.09) (0.10) (0.11)

Dist. Coast 0.01 −0.12∗∗ 0.07 0.25∗∗∗ 0.40∗∗∗ 0.42∗∗∗ 0.42∗∗∗ 0.38∗∗∗ 0.14∗∗ 0.23∗∗∗ 0.16∗∗

(0.05) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06)

Dist. River −0.03 −0.21∗ −0.24∗∗ −0.51∗∗∗ −0.96∗∗∗ −0.52∗∗∗ −0.27∗ −0.17 −0.20 −0.22 −0.10

(0.10) (0.12) (0.12) (0.13) (0.12) (0.14) (0.14) (0.14) (0.14) (0.15) (0.16)

Ruggedness −0.27∗∗∗ −0.34∗∗∗ −0.33∗∗∗ −0.57∗∗∗ −0.29∗∗∗ −0.73∗∗∗ −0.61∗∗∗ −0.59∗∗∗ −0.54∗∗∗ −0.58∗∗∗ −0.63∗∗∗

(0.07) (0.09) (0.09) (0.09) (0.11) (0.12) (0.12) (0.12) (0.12) (0.13) (0.13)

Temperature 0.25∗∗∗ 0.36∗∗∗ 0.28∗∗∗ 0.07 −0.09 −0.36∗∗∗ −0.07 −0.05 −0.08 −0.07 −0.03

(0.05) (0.07) (0.07) (0.07) (0.08) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09)

Temperature2 −0.38∗∗ 0.04 −0.23 −0.76∗∗∗ 1.36∗∗∗ 1.52∗∗∗ 0.76∗∗ 0.47 0.15 −0.36 −0.36

(0.18) (0.25) (0.25) (0.29) (0.32) (0.40) (0.37) (0.37) (0.36) (0.40) (0.41)

Precipitation −0.68∗∗∗ −1.10∗∗∗ −0.58∗∗∗ −0.21 −0.79∗∗∗ −0.28∗ 0.17 0.21 −0.03 0.12 0.15

(0.11) (0.13) (0.12) (0.13) (0.14) (0.16) (0.15) (0.15) (0.15) (0.16) (0.16)

Precipitation2 1.14∗∗∗ 1.86∗∗∗ 0.89∗∗∗ 0.31 1.25∗∗∗ 0.20 −0.57∗ −0.67∗∗ −0.18 −0.49 −0.52∗

(0.22) (0.26) (0.25) (0.26) (0.29) (0.31) (0.30) (0.30) (0.29) (0.32) (0.32)

Elevation −1.26∗∗∗ −1.05∗∗∗ −1.19∗∗∗ −2.36∗∗∗ −3.82∗∗∗ −4.21∗∗∗ −3.27∗∗∗ −3.12∗∗∗ −2.66∗∗∗ −3.16∗∗∗ −2.82∗∗∗

(0.29) (0.38) (0.37) (0.37) (0.39) (0.45) (0.44) (0.45) (0.44) (0.49) (0.48)

Soil Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Adj. R2 0.09 0.12 0.10 0.07 0.10 0.09 0.09 0.08 0.07 0.07 0.07

Num. obs. 21, 597 21, 597 21, 597 21, 597 21, 597 21, 597 21, 597 21, 597 21, 597 21, 597 21, 597

Notes: The table reports the regression results of eq. (14) using the county seats. Heteroskedasticity-robust standard

errors are in parentheses (∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1). Distances in 10,000 km, Ruggedness in Ruggedness Index

x 10,000,000, Temperature in 100◦C, Precipitation in 10 m, Elevation in 100 km. Coefficient estimates on categorical

soil variables - dominant soil type, landform, lithology - omitted from the table.
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Table C-2: Local Geography Regressions (Prefecture Seats, Small Pixels)

200 BCE 1 CE 200 CE 400 CE 600 CE 800 CE 1000 CE 1200 CE 1400 CE 1600 CE 1800 CE

Intercept 0.02∗ 0.03∗∗ 0.01 0.07∗∗∗ 0.09∗∗∗ 0.16∗∗∗ 0.14∗∗∗ 0.18∗∗∗ 0.09∗∗∗ 0.09∗∗∗ 0.09∗∗∗

(0.01) (0.01) (0.02) (0.02) (0.03) (0.03) (0.04) (0.04) (0.03) (0.03) (0.03)

Dist. Equator −0.03∗ −0.06∗∗ −0.03 −0.14∗∗∗ −0.20∗∗∗ −0.25∗∗∗ −0.25∗∗∗ −0.33∗∗∗ −0.14∗∗∗ −0.14∗∗∗ −0.15∗∗∗

(0.02) (0.02) (0.03) (0.04) (0.05) (0.06) (0.06) (0.06) (0.05) (0.05) (0.05)

Dist. Coast −0.00 0.01 0.03 0.12∗∗∗ 0.17∗∗∗ 0.08∗∗ 0.07∗ 0.09∗∗ 0.04 0.03 0.01

(0.01) (0.02) (0.02) (0.03) (0.03) (0.03) (0.04) (0.04) (0.03) (0.03) (0.03)

Dist. River 0.00 −0.03 −0.03 −0.11∗ −0.20∗∗∗ −0.22∗∗∗ −0.14∗ −0.19∗∗ −0.08 −0.08 −0.09

(0.03) (0.04) (0.05) (0.07) (0.06) (0.07) (0.08) (0.08) (0.07) (0.07) (0.08)

Ruggedness −0.04∗∗∗ −0.07∗∗∗ −0.06∗∗ −0.13∗∗∗ −0.12∗∗ −0.29∗∗∗ −0.20∗∗∗ −0.17∗∗ −0.31∗∗∗ −0.28∗∗∗ −0.20∗∗∗

(0.01) (0.02) (0.02) (0.04) (0.06) (0.07) (0.07) (0.07) (0.06) (0.06) (0.07)

Temperature −0.01 0.01 0.04∗ −0.00 −0.03 −0.16∗∗∗ −0.11∗∗ −0.17∗∗∗ −0.03 −0.02 −0.05

(0.02) (0.02) (0.02) (0.04) (0.04) (0.05) (0.06) (0.06) (0.04) (0.04) (0.05)

Temperature2 0.02 −0.03 −0.05 −0.16 −0.18 0.61∗∗∗ 0.20 −0.00 −0.13 −0.06 −0.08

(0.06) (0.07) (0.08) (0.14) (0.14) (0.22) (0.21) (0.22) (0.19) (0.19) (0.18)

Precipitation −0.06∗∗ −0.12∗∗∗ −0.06 −0.13∗∗ −0.07 −0.15∗ −0.14 −0.16∗ −0.02 −0.06 −0.06

(0.03) (0.04) (0.04) (0.07) (0.07) (0.08) (0.09) (0.09) (0.07) (0.07) (0.08)

Precipitation2 0.10∗ 0.23∗∗∗ 0.10 0.24∗ 0.08 0.20 0.18 0.22 −0.04 0.05 0.05

(0.05) (0.08) (0.09) (0.14) (0.15) (0.16) (0.18) (0.17) (0.14) (0.15) (0.15)

Elevation −0.12 −0.14 −0.07 −0.56∗∗∗ −1.17∗∗∗ −0.96∗∗∗ −1.06∗∗∗ −1.44∗∗∗ −0.09 −0.11 −0.43∗

(0.08) (0.11) (0.13) (0.20) (0.21) (0.26) (0.27) (0.28) (0.23) (0.24) (0.24)

Soil Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Adj. R2 0.00 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.02

Num. obs. 21, 597 21, 597 21, 597 21, 597 21, 597 21, 597 21, 597 21, 597 21, 597 21, 597 21, 597

Notes: The table reports the regression results of eq. (14) using the prefecture seats. Heteroskedasticity-robust standard

errors are in parentheses (∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1). Distances in 10,000 km, Ruggedness in Ruggedness Index

x 10,000,000, Temperature in 100◦C, Precipitation in 10 m, Elevation in 100 km. Coefficient estimates on categorical

soil variables - dominant soil type, landform, lithology - omitted from the table.

viii



Table C-3: Local Geography Regressions (County Seats, Medium Pixels)

200 BCE 1 CE 200 CE 400 CE 600 CE 800 CE 1000 CE 1200 CE 1400 CE 1600 CE 1800 CE

Intercept 0.17∗∗ 0.29∗∗∗ 0.22∗∗ 0.45∗∗∗ 0.59∗∗∗ 0.65∗∗∗ 0.30∗∗ 0.30∗∗ 0.40∗∗∗ 0.51∗∗∗ 0.48∗∗∗

(0.08) (0.10) (0.10) (0.10) (0.11) (0.12) (0.12) (0.12) (0.12) (0.13) (0.13)

Dist. Equator −0.23∗ −0.37∗∗ −0.37∗∗ −0.70∗∗∗ −0.93∗∗∗ −1.22∗∗∗ −0.80∗∗∗ −0.76∗∗∗ −0.85∗∗∗ −0.99∗∗∗ −0.87∗∗∗

(0.13) (0.17) (0.17) (0.17) (0.18) (0.21) (0.20) (0.20) (0.20) (0.22) (0.22)

Dist. Coast −0.14 −0.32∗∗∗ 0.07 0.45∗∗∗ 0.80∗∗∗ 0.86∗∗∗ 0.89∗∗∗ 0.75∗∗∗ 0.30∗∗ 0.49∗∗∗ 0.31∗∗

(0.10) (0.11) (0.11) (0.11) (0.12) (0.12) (0.13) (0.13) (0.12) (0.13) (0.13)

Dist. River 0.07 −0.13 −0.17 −0.66∗∗∗ −1.49∗∗∗ −0.79∗∗∗ −0.25 −0.10 −0.36 −0.58∗ −0.26

(0.20) (0.24) (0.24) (0.25) (0.25) (0.29) (0.29) (0.30) (0.30) (0.31) (0.33)

Ruggedness −0.50∗∗∗ −0.57∗∗∗ −0.77∗∗∗ −1.28∗∗∗ −0.66∗∗∗ −1.21∗∗∗ −1.35∗∗∗ −1.33∗∗∗ −1.32∗∗∗ −1.42∗∗∗ −1.42∗∗∗

(0.15) (0.21) (0.21) (0.21) (0.24) (0.26) (0.26) (0.26) (0.27) (0.28) (0.28)

Temperature 0.58∗∗∗ 0.81∗∗∗ 0.61∗∗∗ 0.27∗ 0.12 −0.48∗∗ 0.00 0.10 0.07 0.07 0.13

(0.12) (0.16) (0.15) (0.15) (0.17) (0.19) (0.19) (0.19) (0.18) (0.20) (0.20)

Temperature2 −0.25 0.35 −0.14 −1.40∗∗ 2.42∗∗∗ 3.96∗∗∗ 2.18∗∗∗ 1.36∗ 0.94 0.42 0.20

(0.42) (0.57) (0.58) (0.61) (0.67) (0.79) (0.75) (0.76) (0.76) (0.82) (0.84)

Precipitation −1.15∗∗∗ −1.86∗∗∗ −0.84∗∗∗ −0.16 −1.31∗∗∗ −0.15 0.55∗ 0.59∗∗ 0.14 0.40 0.45

(0.22) (0.26) (0.25) (0.26) (0.29) (0.31) (0.30) (0.30) (0.31) (0.32) (0.33)

Precipitation2 1.86∗∗∗ 3.07∗∗∗ 1.15∗∗ 0.10 2.04∗∗∗ −0.32 −1.58∗∗∗ −1.69∗∗∗ −0.92 −1.55∗∗ −1.55∗∗

(0.45) (0.53) (0.52) (0.53) (0.60) (0.63) (0.61) (0.62) (0.62) (0.66) (0.67)

Elevation −1.95∗∗∗ −1.33∗ −2.01∗∗ −4.12∗∗∗ −6.42∗∗∗ −7.31∗∗∗ −6.05∗∗∗ −5.39∗∗∗ −4.23∗∗∗ −5.17∗∗∗ −4.56∗∗∗

(0.62) (0.81) (0.80) (0.79) (0.83) (0.96) (0.93) (0.94) (0.94) (1.03) (1.02)

Soil Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Adj. R2 0.17 0.20 0.17 0.12 0.19 0.18 0.18 0.17 0.14 0.15 0.14

Num. obs. 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590

Notes: The table reports the regression results of eq. (14) using the county seats. Heteroskedasticity-robust standard

errors are in parentheses (∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1). Distances in 10,000 km, Ruggedness in Ruggedness Index

x 10,000,000, Temperature in 100◦C, Precipitation in 10 m, Elevation in 100 km. Coefficient estimates on categorical

soil variables - dominant soil type, landform, lithology - omitted from the table.
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Table C-4: Local Geography Regressions (Prefecture Seats, Medium Pixels)

200 BCE 1 CE 200 CE 400 CE 600 CE 800 CE 1000 CE 1200 CE 1400 CE 1600 CE 1800 CE

Intercept 0.05∗ 0.08∗∗ 0.04 0.17∗∗∗ 0.17∗∗∗ 0.32∗∗∗ 0.26∗∗∗ 0.35∗∗∗ 0.16∗∗ 0.18∗∗ 0.20∗∗∗

(0.03) (0.03) (0.04) (0.06) (0.06) (0.08) (0.08) (0.08) (0.07) (0.07) (0.07)

Dist. Equator −0.08∗ −0.10∗ −0.04 −0.27∗∗∗ −0.36∗∗∗ −0.53∗∗∗ −0.46∗∗∗ −0.66∗∗∗ −0.31∗∗∗ −0.32∗∗∗ −0.35∗∗∗

(0.04) (0.06) (0.06) (0.10) (0.10) (0.13) (0.14) (0.14) (0.12) (0.12) (0.12)

Dist. Coast 0.02 0.03 0.05 0.23∗∗∗ 0.40∗∗∗ 0.22∗∗∗ 0.22∗∗∗ 0.33∗∗∗ 0.16∗∗ 0.16∗∗ 0.10

(0.03) (0.04) (0.05) (0.07) (0.07) (0.08) (0.08) (0.09) (0.07) (0.07) (0.07)

Dist. River −0.03 −0.04 −0.07 −0.21 −0.36∗∗∗ −0.50∗∗∗ −0.30∗ −0.39∗∗ −0.15 −0.18 −0.09

(0.07) (0.09) (0.10) (0.15) (0.14) (0.16) (0.17) (0.18) (0.16) (0.17) (0.17)

Ruggedness 0.00 −0.05 −0.12∗ −0.32∗∗∗ −0.18 −0.49∗∗∗ −0.46∗∗∗ −0.39∗∗ −0.51∗∗∗ −0.47∗∗∗ −0.41∗∗

(0.05) (0.06) (0.07) (0.10) (0.13) (0.15) (0.17) (0.16) (0.16) (0.16) (0.16)

Temperature −0.03 0.04 0.16∗∗∗ −0.03 −0.04 −0.31∗∗∗ −0.17 −0.29∗∗ −0.06 −0.02 −0.08

(0.04) (0.05) (0.06) (0.09) (0.09) (0.12) (0.13) (0.13) (0.11) (0.11) (0.11)

Temperature2 −0.01 −0.22 −0.35∗ −0.10 0.00 1.29∗∗∗ 0.63 0.11 −0.06 −0.01 0.06

(0.16) (0.19) (0.21) (0.32) (0.33) (0.49) (0.48) (0.50) (0.44) (0.45) (0.44)

Precipitation −0.08 −0.22∗∗∗ −0.22∗∗ −0.27∗∗ −0.15 −0.29 −0.25 −0.31∗ 0.05 −0.15 −0.22

(0.05) (0.07) (0.09) (0.13) (0.15) (0.18) (0.19) (0.19) (0.16) (0.17) (0.17)

Precipitation2 0.13 0.41∗∗∗ 0.39∗ 0.49∗ 0.23 0.46 0.35 0.51 −0.24 0.16 0.31

(0.11) (0.15) (0.20) (0.26) (0.31) (0.37) (0.38) (0.38) (0.33) (0.35) (0.34)

Elevation −0.37∗ −0.26 0.05 −0.97∗∗ −1.99∗∗∗ −1.83∗∗∗ −1.69∗∗∗ −2.67∗∗∗ −0.11 −0.10 −0.86

(0.20) (0.25) (0.27) (0.46) (0.47) (0.59) (0.61) (0.66) (0.58) (0.59) (0.57)

Soil Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Adj. R2 0.01 0.01 0.03 0.03 0.04 0.04 0.05 0.05 0.03 0.03 0.03

Num. obs. 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590

Notes: The table reports the regression results of eq. (14) using the prefecture seats. Heteroskedasticity-robust standard

errors are in parentheses (∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1). Distances in 10,000 km, Ruggedness in Ruggedness Index

x 10,000,000, Temperature in 100◦C, Precipitation in 10 m, Elevation in 100 km. Coefficient estimates on categorical

soil variables - dominant soil type, landform, lithology - omitted from the table.
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Table C-5: Local Geography Regressions (County Seats, Large Pixels)

200 BCE 1 CE 200 CE 400 CE 600 CE 800 CE 1000 CE 1200 CE 1400 CE 1600 CE 1800 CE

Intercept 0.19 0.48∗∗∗ 0.37∗∗ 0.75∗∗∗ 0.82∗∗∗ 1.12∗∗∗ 0.52∗∗∗ 0.58∗∗∗ 0.77∗∗∗ 0.86∗∗∗ 0.91∗∗∗

(0.13) (0.17) (0.17) (0.17) (0.18) (0.20) (0.19) (0.19) (0.20) (0.21) (0.22)

Dist. Equator −0.22 −0.65∗∗ −0.52∗ −1.15∗∗∗ −1.55∗∗∗ −1.94∗∗∗ −1.05∗∗∗ −1.23∗∗∗ −1.38∗∗∗ −1.61∗∗∗ −1.73∗∗∗

(0.23) (0.28) (0.29) (0.29) (0.30) (0.34) (0.33) (0.33) (0.34) (0.36) (0.37)

Dist. Coast −0.07 −0.27 0.09 0.51∗∗∗ 1.20∗∗∗ 1.06∗∗∗ 1.02∗∗∗ 0.97∗∗∗ 0.39∗∗ 0.60∗∗∗ 0.41∗

(0.16) (0.18) (0.18) (0.18) (0.19) (0.19) (0.20) (0.20) (0.20) (0.20) (0.21)

Dist. River −0.23 −0.70∗ −0.69∗ −1.43∗∗∗ −2.22∗∗∗ −1.62∗∗∗ −0.85∗ −0.80∗ −1.15∗∗ −1.42∗∗∗ −0.81

(0.34) (0.39) (0.40) (0.41) (0.42) (0.46) (0.46) (0.46) (0.46) (0.47) (0.50)

Ruggedness −0.61∗∗ −0.81∗∗ −1.00∗∗∗ −1.88∗∗∗ −0.59 −1.70∗∗∗ −1.69∗∗∗ −1.84∗∗∗ −1.93∗∗∗ −1.73∗∗∗ −2.06∗∗∗

(0.26) (0.37) (0.37) (0.37) (0.41) (0.44) (0.43) (0.43) (0.45) (0.46) (0.46)

Temperature 1.11∗∗∗ 1.14∗∗∗ 1.07∗∗∗ 0.38 −0.13 −0.80∗∗∗ 0.13 0.03 −0.05 −0.11 −0.12

(0.21) (0.27) (0.27) (0.26) (0.28) (0.31) (0.30) (0.30) (0.30) (0.31) (0.32)

Temperature2 −1.51∗∗ −0.75 −1.10 −2.05∗ 3.65∗∗∗ 4.49∗∗∗ 2.63∗∗ 1.96 0.66 0.92 0.59

(0.74) (0.98) (0.99) (1.06) (1.12) (1.26) (1.25) (1.25) (1.26) (1.33) (1.35)

Precipitation −1.34∗∗∗ −2.44∗∗∗ −1.40∗∗∗ −0.52 −1.72∗∗∗ −0.51 0.58 0.67 0.40 0.61 0.31

(0.35) (0.41) (0.41) (0.42) (0.44) (0.48) (0.47) (0.47) (0.47) (0.50) (0.51)

Precipitation2 2.11∗∗∗ 4.06∗∗∗ 2.11∗∗ 0.66 2.58∗∗∗ −0.05 −2.01∗∗ −2.20∗∗ −1.87∗ −2.44∗∗ −1.75∗

(0.72) (0.84) (0.84) (0.85) (0.91) (0.99) (0.97) (0.97) (0.98) (1.02) (1.03)

Elevation −2.62∗∗ −2.84∗∗ −3.21∗∗ −6.91∗∗∗ −11.63∗∗∗ −12.49∗∗∗ −9.09∗∗∗ −9.34∗∗∗ −8.88∗∗∗ −9.90∗∗∗ −9.90∗∗∗

(1.04) (1.33) (1.34) (1.33) (1.42) (1.54) (1.52) (1.52) (1.56) (1.69) (1.70)

Soil Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Adj. R2 0.21 0.24 0.22 0.17 0.26 0.26 0.25 0.24 0.22 0.23 0.22

Num. obs. 5, 402 5, 402 5, 402 5, 402 5, 402 5, 402 5, 402 5, 402 5, 402 5, 402 5, 402

Notes: The table reports the regression results of eq. (14) using the county seats. Heteroskedasticity-robust standard

errors are in parentheses (∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1). Distances in 10,000 km, Ruggedness in Ruggedness Index

x 10,000,000, Temperature in 100◦C, Precipitation in 10 m, Elevation in 100 km. Coefficient estimates on categorical

soil variables - dominant soil type, landform, lithology - omitted from the table.
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Table C-6: Local Geography Regressions (Prefecture Seats, Large Pixels)

200 BCE 1 CE 200 CE 400 CE 600 CE 800 CE 1000 CE 1200 CE 1400 CE 1600 CE 1800 CE

Intercept 0.08 0.11 0.09 0.33∗∗∗ 0.29∗∗∗ 0.51∗∗∗ 0.43∗∗∗ 0.64∗∗∗ 0.30∗∗ 0.36∗∗∗ 0.34∗∗∗

(0.05) (0.07) (0.08) (0.11) (0.11) (0.14) (0.15) (0.15) (0.13) (0.13) (0.13)

Dist. Equator −0.08 −0.14 −0.08 −0.53∗∗∗ −0.67∗∗∗ −0.93∗∗∗ −0.78∗∗∗ −1.16∗∗∗ −0.54∗∗ −0.62∗∗∗ −0.56∗∗

(0.08) (0.11) (0.13) (0.18) (0.20) (0.23) (0.25) (0.26) (0.22) (0.21) (0.22)

Dist. Coast 0.02 0.03 0.09 0.42∗∗∗ 0.58∗∗∗ 0.33∗∗ 0.36∗∗ 0.51∗∗∗ 0.18 0.14 −0.02

(0.05) (0.07) (0.09) (0.12) (0.13) (0.13) (0.15) (0.15) (0.12) (0.12) (0.13)

Dist. River 0.00 0.05 −0.07 −0.49∗ −0.35 −0.58∗ −0.34 −0.57∗ −0.13 −0.38 −0.17

(0.12) (0.17) (0.19) (0.27) (0.25) (0.31) (0.34) (0.33) (0.29) (0.29) (0.31)

Ruggedness −0.21∗∗ −0.13 −0.38∗∗∗ −0.87∗∗∗ −0.50∗ −0.93∗∗∗ −0.53∗ −0.65∗∗ −1.06∗∗∗ −1.10∗∗∗ −0.87∗∗∗

(0.08) (0.10) (0.15) (0.20) (0.26) (0.28) (0.30) (0.31) (0.27) (0.27) (0.30)

Temperature 0.03 0.08 0.27∗∗ 0.10 −0.10 −0.48∗∗ −0.20 −0.43∗ −0.05 −0.05 −0.02

(0.07) (0.10) (0.12) (0.16) (0.17) (0.20) (0.22) (0.22) (0.18) (0.18) (0.19)

Temperature2 −0.14 −0.23 −0.62 −0.50 −0.04 1.75∗∗ 0.24 −0.76 −0.78 −0.60 −0.59

(0.26) (0.35) (0.39) (0.59) (0.62) (0.84) (0.88) (0.88) (0.75) (0.75) (0.73)

Precipitation −0.21∗ −0.40∗∗ −0.47∗∗ −0.91∗∗∗ −0.41 −0.49 −0.43 −0.66∗ −0.12 −0.35 −0.36

(0.11) (0.16) (0.20) (0.25) (0.29) (0.32) (0.34) (0.34) (0.28) (0.28) (0.29)

Precipitation2 0.37 0.72∗∗ 0.87∗∗ 1.76∗∗∗ 0.69 0.55 0.48 1.02 0.01 0.46 0.43

(0.23) (0.33) (0.41) (0.52) (0.59) (0.66) (0.70) (0.69) (0.58) (0.58) (0.60)

Elevation −0.30 −0.36 −0.07 −1.74∗∗ −3.56∗∗∗ −3.40∗∗∗ −3.22∗∗∗ −5.12∗∗∗ −0.58 −0.85 −1.59

(0.32) (0.45) (0.56) (0.79) (0.85) (1.04) (1.15) (1.19) (1.02) (1.03) (1.05)

Soil Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Adj. R2 0.00 0.02 0.03 0.03 0.06 0.06 0.07 0.07 0.03 0.03 0.03

Num. obs. 5, 402 5, 402 5, 402 5, 402 5, 402 5, 402 5, 402 5, 402 5, 402 5, 402 5, 402

Notes: The table reports the regression results of eq. (14) using the prefecture seats. Heteroskedasticity-robust standard

errors are in parentheses (∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1). Distances in 10,000 km, Ruggedness in Ruggedness Index

x 10,000,000, Temperature in 100◦C, Precipitation in 10 m, Elevation in 100 km. Coefficient estimates on categorical

soil variables - dominant soil type, landform, lithology - omitted from the table.
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Table C-7: Local Geography Regressions (County Seats, Very Large Pixels)

200 BCE 1 CE 200 CE 400 CE 600 CE 800 CE 1000 CE 1200 CE 1400 CE 1600 CE 1800 CE

Intercept 0.10 0.66∗∗∗ 0.52∗∗ 0.76∗∗∗ 1.02∗∗∗ 1.36∗∗∗ 0.36 0.48∗ 0.77∗∗∗ 0.72∗∗ 0.79∗∗∗

(0.21) (0.25) (0.25) (0.25) (0.25) (0.29) (0.28) (0.28) (0.28) (0.30) (0.30)

Dist. Equator 0.18 −0.74∗ −0.53 −1.00∗∗ −1.81∗∗∗ −2.43∗∗∗ −0.85∗ −1.09∗∗ −1.45∗∗∗ −1.51∗∗∗ −1.39∗∗∗

(0.35) (0.43) (0.43) (0.43) (0.43) (0.50) (0.48) (0.49) (0.48) (0.52) (0.52)

Dist. Coast −0.30 −0.36 −0.01 0.68∗∗∗ 1.40∗∗∗ 1.29∗∗∗ 1.10∗∗∗ 1.13∗∗∗ 0.59∗∗ 0.95∗∗∗ 0.54∗

(0.23) (0.25) (0.25) (0.25) (0.25) (0.26) (0.26) (0.26) (0.26) (0.27) (0.28)

Dist. River 0.16 −0.73 −1.10∗ −1.98∗∗∗ −2.80∗∗∗ −2.02∗∗∗ −0.94 −0.91 −0.92 −1.23∗ −0.73

(0.47) (0.55) (0.57) (0.60) (0.57) (0.65) (0.65) (0.64) (0.63) (0.65) (0.66)

Ruggedness −1.01∗∗ −1.03 −1.12∗ −2.12∗∗∗ −0.44 −1.84∗∗∗ −1.22∗ −1.15∗ −1.94∗∗∗ −1.90∗∗∗ −2.57∗∗∗

(0.43) (0.63) (0.64) (0.57) (0.64) (0.68) (0.66) (0.66) (0.68) (0.69) (0.69)

Temperature 1.93∗∗∗ 1.70∗∗∗ 1.84∗∗∗ 1.43∗∗∗ 0.28 −0.71 0.50 0.56 0.54 0.69 0.95∗

(0.35) (0.42) (0.42) (0.41) (0.42) (0.46) (0.46) (0.47) (0.46) (0.48) (0.48)

Temperature2 −2.18∗ −1.77 −2.83∗∗ −4.36∗∗∗ 2.77∗ 4.60∗∗∗ 4.45∗∗ 2.31 −0.12 −0.04 −1.21

(1.12) (1.43) (1.43) (1.50) (1.54) (1.74) (1.77) (1.82) (1.80) (1.88) (1.91)

Precipitation −1.56∗∗∗ −2.86∗∗∗ −1.82∗∗∗ −0.64 −1.79∗∗∗ −0.12 1.56∗∗ 1.43∗∗ 0.81 1.35∗ 1.11

(0.49) (0.58) (0.59) (0.60) (0.61) (0.67) (0.67) (0.67) (0.68) (0.69) (0.70)

Precipitation2 2.00∗ 4.22∗∗∗ 2.35∗ 0.15 2.07 −1.90 −5.18∗∗∗ −5.01∗∗∗ −3.92∗∗∗ −5.27∗∗∗ −4.58∗∗∗

(1.03) (1.21) (1.23) (1.23) (1.27) (1.41) (1.47) (1.45) (1.47) (1.51) (1.51)

Elevation −1.62 −3.45∗ −3.42∗ −7.91∗∗∗ −13.50∗∗∗ −15.98∗∗∗ −10.20∗∗∗ −11.02∗∗∗ −9.97∗∗∗ −10.99∗∗∗ −9.61∗∗∗

(1.61) (2.01) (2.02) (2.01) (2.02) (2.30) (2.22) (2.26) (2.25) (2.43) (2.42)

Soil Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Adj. R2 0.28 0.29 0.27 0.23 0.33 0.32 0.33 0.32 0.28 0.30 0.31

Num. obs. 3, 463 3, 463 3, 463 3, 463 3, 463 3, 463 3, 463 3, 463 3, 463 3, 463 3, 463

Notes: The table reports the regression results of eq. (14) using the county seats. Heteroskedasticity-robust standard

errors are in parentheses (∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1). Distances in 10,000 km, Ruggedness in Ruggedness Index

x 10,000,000, Temperature in 100◦C, Precipitation in 10 m, Elevation in 100 km. Coefficient estimates on categorical

soil variables - dominant soil type, landform, lithology - omitted from the table.
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Table C-8: Local Geography Regressions (Prefecture Seats, Very Large Pixels)

200 BCE 1 CE 200 CE 400 CE 600 CE 800 CE 1000 CE 1200 CE 1400 CE 1600 CE 1800 CE

Intercept 0.14∗ 0.16∗ 0.07 0.51∗∗∗ 0.19 0.65∗∗∗ 0.57∗∗ 0.89∗∗∗ 0.27 0.30 0.28

(0.08) (0.10) (0.11) (0.16) (0.16) (0.22) (0.23) (0.24) (0.20) (0.20) (0.20)

Dist. Equator −0.13 −0.21 0.02 −0.69∗∗ −0.55∗ −1.19∗∗∗ −1.01∗∗ −1.62∗∗∗ −0.33 −0.40 −0.33

(0.12) (0.16) (0.18) (0.28) (0.29) (0.38) (0.40) (0.41) (0.34) (0.33) (0.33)

Dist. Coast 0.00 −0.01 0.02 0.31∗ 0.80∗∗∗ 0.47∗∗ 0.48∗∗ 0.75∗∗∗ 0.23 0.19 0.04

(0.09) (0.10) (0.13) (0.17) (0.19) (0.20) (0.21) (0.22) (0.18) (0.18) (0.20)

Dist. River −0.00 0.00 −0.11 −0.83∗∗ −0.80∗∗ −1.17∗∗∗ −0.70 −0.96∗∗ −0.32 −0.53 −0.12

(0.18) (0.23) (0.26) (0.39) (0.37) (0.45) (0.48) (0.46) (0.41) (0.44) (0.46)

Ruggedness −0.13 −0.27∗ −0.35∗ −1.11∗∗∗ −0.48 −1.24∗∗∗ −0.90∗ −1.25∗∗ −1.69∗∗∗ −1.48∗∗∗ −1.60∗∗∗

(0.12) (0.15) (0.19) (0.32) (0.40) (0.46) (0.50) (0.50) (0.44) (0.42) (0.47)

Temperature 0.05 0.21 0.58∗∗∗ 0.13 0.22 −0.65∗ −0.24 −0.65∗ 0.31 0.32 0.41

(0.11) (0.15) (0.17) (0.25) (0.27) (0.35) (0.36) (0.36) (0.31) (0.30) (0.31)

Temperature2 0.03 −0.22 −0.66 −0.50 0.03 3.66∗∗∗ 1.34 −0.51 −0.45 0.32 0.08

(0.37) (0.47) (0.55) (0.78) (0.89) (1.27) (1.22) (1.19) (1.15) (1.16) (1.12)

Precipitation −0.43∗∗∗ −0.78∗∗∗ −0.69∗∗ −1.37∗∗∗ −0.32 −0.88∗ −0.50 −0.69 0.10 −0.42 −0.50

(0.15) (0.21) (0.28) (0.38) (0.40) (0.48) (0.51) (0.50) (0.43) (0.43) (0.45)

Precipitation2 0.78∗∗ 1.35∗∗∗ 1.14∗∗ 2.42∗∗∗ 0.25 0.96 0.24 0.71 −0.91 0.04 0.38

(0.31) (0.41) (0.58) (0.78) (0.83) (0.99) (1.06) (1.05) (0.90) (0.88) (0.92)

Elevation −0.40 −0.23 0.85 −2.45∗ −3.91∗∗∗ −4.35∗∗ −4.31∗∗ −7.21∗∗∗ 1.38 1.06 0.50

(0.53) (0.72) (0.80) (1.36) (1.36) (1.75) (1.78) (1.86) (1.63) (1.59) (1.59)

Soil Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Adj. R2 0.00 0.03 0.04 0.06 0.08 0.09 0.10 0.10 0.04 0.06 0.06

Num. obs. 3, 463 3, 463 3, 463 3, 463 3, 463 3, 463 3, 463 3, 463 3, 463 3, 463 3, 463

Notes: The table reports the regression results of eq. (14) using the prefecture seats. Heteroskedasticity-robust standard

errors are in parentheses (∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1). Distances in 10,000 km, Ruggedness in Ruggedness Index

x 10,000,000, Temperature in 100◦C, Precipitation in 10 m, Elevation in 100 km. Coefficient estimates on categorical

soil variables - dominant soil type, landform, lithology - omitted from the table.
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C.2 Estimated Direct Geography Effects and the Historical

Context

In Section 4.1 we estimate to what extent geography directly determines city locations.

Following eq. (14), we regress an urban indicator on local geographic conditions.

The baseline results and a multitude of robustness checks suggest local geography to

determine the location of county seats while the link to prefecture seat locations appears

to be much weaker, if existent at all. The effect that geography has on city locations

varies over time with coefficient estimates fluctuating in magnitude and some even

changing their direction. In this section, we show that many of these changes are related

to major historical developments that reflect the evolution of our model’s parameters

and the impact that institutions have on the causal framework between geography and

city locations.

County seats becoming less likely to locate far from the equator coincides with the

population’s southward shift. Before the An Lushan Rebellion (755 - 763 CE), two

thirds of the population lived in the north and one third in the south. By 1100 CE,

the distribution was reversed with two thirds living in the south and one third in the

north (von Glahn, 2016). By the end of the 13th century the the northern share had

dropped to 15 percent (Lewis, 2009).1 An important contributor to this trend were

the disproportional productivity gains in rice-based agriculture along the Yangzi in the

south compared to grain-based agriculture along the Yellow River in the north (von

Glahn, 2016).2

The surge in the coastal distance coefficient estimate over the first millennium CE

might be related to a westward extension linked to the role of the silk road. Trade with

Central Asia emerged at a larger scale in the second century CE (von Glahn, 2016). A

few centuries later, the Tang dynasty (618 - 907 CE) pursued a westward expansion

primarily based on military and merchant camps (Mote, 1999).3

1Linked to substantially dissimilar geographic conditions, northern and southern agriculture were
rather unalike. In the north, rainfall was unevenly distributed over the year and agriculture centered on
e.g. wheat, millet, sorghum, and soybeans. In the south, water was more abundant throughout the year
and common agricultural products were e.g. rice, silk, tea, and oils. The different rainfall patterns did
not just affect crop choice, but made the north compared to the south more prone to famines caused by
floods, droughts, locust invasions, and soil salinization (Lewis, 2009; von Glahn, 2016). These disparities
are an example of how geography jointly determines the theoretical framework’s Ai and Ti.

2See Section C.9 for a discussion on geographic shocks in the form of floods and changing climatic
conditions.

3Maritime trade also played a role in imperial times but developed differently form silk road trade.
In the fifth century, ocean traders began traveling through the street of Melaka (von Glahn, 2016;
Hall, 2011). During the Tang dynasty (618 - 907 CE), ocean trade with India and Muslim countries
surpassed silk road trade. Maritime trade had marked effects during the Southern Song dynasty (1127
- 1279 CE) with urbanization rates of 25 percent in a maritime trade center, compared three percent a
hinterland region, and rapidly developing trade with Japan. Throughout the later centuries ocean trade
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We can interpret a lot into the coefficient estimates and their evolution over time.

More than two millennia of imperial history offer numerous examples of how institutional

developments might have affected the causal framework between city locations and

geography. Emperors that invested more in famine relief lowered the threat level Ti

coming from geographic variables related to extreme weather events. More attention to

flood control reduced the risk associated with living nearby a river. Nonetheless, it is

important to keep the motivation of using machine learning methods in this application

in mind, implying that there might not be a meaningful interpretation to individual

econometric coefficient estimates. Geographic factors co-evolve across space and it may

be a complex combination of them determining city locations. In light of that, the

linearity and the ceteris paribus assumption appear inappropriate, impeding estimation

and interpretation. This paper, therefore, focuses on the role of geography as a whole

rather than variable-specific effects.

did, however, experience various setbacks that did not eliminate but did complicate maritime trade. The
Yuan dynasty (1260 - 1368 CE) fostered trade across Central Asia, but imposed a government monopoly
on maritime trade. Similarly, the Ming dynasty (1368 - 1644 CE) imposed a ban on maritime trade for
private merchants which lasted until the late 16th century. Merchants circumvented a lasting ban on
trade with Japan by trading indirectly, i.e. through Portuguese intermediaries (the Portuguese formally
set up the trading base of Macau in 1557 CE), neutral ports, and clandestine traders (von Glahn, 2016).
In line with their predecessors, the subsequent Qing dynasty (1644 - 1911 CE) also temporarily banned
maritime trade, with large scale ocean trade arising after the ban was lifted (von Glahn, 2016; Zhao,
2013).

xvi



C.3 Robustness Check: Probit and Logit Regressions

In this section, we repeat the estimations measuring direct effects of geography on city

locations with logit and probit regressions. Observations refer to medium size pixels for

which the association between local geography and city locations is clearer than at the

baseline resolution (see Section 3.3.1). Table C-3 and Table C-4 in Section C.1 display

the respective results when using a linear probability model.

The OLS, probit, and logit coefficient estimates do not allow for comparisons in terms

of magnitude but in terms of their sign and statistical significance. And in that regard, the

following tables are aligned with our baseline results. We see more significant estimates

in county seat than in prefecture seat regressions. Distance from the equator, ruggedness,

and elevation have negative effects. Distance from the coast reflects the in Section C.2

discussed westward expansion of the Tang dynasty.

Table C-9: Local Geography (County Seats, Logit, Medium Pixels)

200 BCE 1 CE 200 CE 400 CE 600 CE 800 CE 1000 CE 1200 CE 1400 CE 1600 CE 1800 CE

Intercept 1.36 1.17 −1.25 −0.03 4.31∗ 3.16∗ −1.39 −1.71 −1.22 −1.15 −1.05

(3.26) (2.60) (2.53) (2.20) (2.24) (1.92) (2.03) (2.00) (1.87) (1.78) (1.71)

Dist. Equator −14.33∗∗∗ −11.61∗∗∗ −9.15∗∗ −10.82∗∗∗ −14.22∗∗∗ −15.60∗∗∗ −9.37∗∗∗ −8.66∗∗ −9.74∗∗∗ −8.91∗∗∗ −7.23∗∗

(5.48) (4.38) (4.23) (3.61) (3.81) (3.28) (3.45) (3.40) (3.17) (2.99) (2.93)

Dist. Coast 2.79 −3.34 1.07 5.12∗∗ 14.63∗∗∗ 11.52∗∗∗ 11.28∗∗∗ 8.71∗∗∗ 0.69 2.55 0.42

(2.51) (2.05) (2.03) (2.13) (1.90) (1.75) (1.85) (1.80) (1.80) (1.69) (1.67)

Dist. River 13.70∗∗ 5.37 4.15 −4.41 −13.16∗∗∗ 1.36 6.91∗ 7.22∗ −0.87 −3.18 −0.60

(5.62) (5.12) (4.92) (5.16) (4.81) (4.17) (4.15) (4.16) (4.27) (4.05) (4.10)

Ruggedness −16.36∗ −14.84∗ −20.67∗∗∗ −29.41∗∗∗ −0.53 −12.92∗∗ −16.53∗∗∗ −18.16∗∗∗ −20.92∗∗∗ −18.77∗∗∗ −20.27∗∗∗

(9.19) (8.20) (8.00) (6.63) (6.88) (5.64) (6.06) (5.94) (5.74) (5.15) (4.91)

Temperature 65.97∗∗∗ 70.35∗∗∗ 70.92∗∗∗ 74.96∗∗∗ 42.86∗∗∗ 43.01∗∗∗ 55.16∗∗∗ 55.02∗∗∗ 60.84∗∗∗ 57.62∗∗∗ 46.92∗∗∗

(11.00) (10.44) (10.68) (10.41) (7.12) (6.61) (7.28) (6.97) (7.09) (6.69) (5.50)

Temperature2 −266.92∗∗∗ −237.78∗∗∗ −248.93∗∗∗ −278.14∗∗∗ −129.36∗∗∗ −137.77∗∗∗ −175.67∗∗∗ −181.42∗∗∗ −209.56∗∗∗ −200.36∗∗∗ −165.66∗∗∗

(39.15) (33.30) (34.19) (33.61) (22.49) (20.53) (22.39) (21.56) (22.34) (20.95) (17.67)

Precipitation −34.33∗∗∗ −32.53∗∗∗ −16.20∗∗ −12.92∗∗∗ −37.56∗∗∗ −19.98∗∗∗ −9.55∗∗ −5.08 −4.60 −0.85 1.31

(7.35) (7.43) (6.96) (4.83) (5.06) (4.47) (4.58) (4.85) (4.84) (4.55) (4.54)

Precipitation2 58.32∗∗∗ 41.93 16.52 27.88∗∗∗ 67.48∗∗∗ 34.88∗∗∗ 16.19 4.16 0.59 −7.84 −11.49

(17.34) (26.00) (22.37) (10.06) (10.04) (9.37) (10.25) (12.12) (11.77) (11.12) (11.41)

Elevation −168.83∗∗∗ −56.41∗∗ −50.90∗∗ −79.20∗∗∗ −174.03∗∗∗ −133.73∗∗∗ −116.93∗∗∗ −89.51∗∗∗ −49.98∗∗∗ −53.36∗∗∗ −41.07∗∗∗

(33.50) (24.70) (24.39) (21.48) (22.14) (18.92) (20.43) (19.18) (16.90) (15.89) (15.20)

Soil Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Num. obs. 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590

Notes: The table reports the regression results of eq. (14) using the county seats. Heteroskedasticity-robust standard errors are in parentheses

(∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1). Distances in 10,000 km, Ruggedness in Ruggedness Index x 10,000,000, Temperature in 100◦C,

Precipitation in 10 m, Elevation in 100 km. Coefficient estimates on categorical soil variables - dominant soil type, landform, lithology -

omitted from the table.
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Table C-10: Local Geography (Prefecture Seats, Logit, Medium Pixels)

200 BCE 1 CE 200 CE 400 CE 600 CE 800 CE 1000 CE 1200 CE 1400 CE 1600 CE 1800 CE

Intercept −7.03 6.55 −9.97 6.73 4.66 6.55∗ 4.74 8.87∗∗∗ 1.17 3.05 3.05

(5.58) (7.59) (7.08) (4.72) (3.99) (3.43) (3.39) (3.34) (3.89) (3.55) (3.60)

Dist. Equator −30.12 −22.91∗ 6.15 −22.31∗∗∗ −20.82∗∗∗ −24.31∗∗∗ −19.53∗∗∗ −26.88∗∗∗ −19.84∗∗∗ −22.15∗∗∗ −16.80∗∗∗

(19.15) (13.16) (12.49) (8.13) (6.77) (5.98) (5.86) (5.79) (6.49) (6.02) (6.14)

Dist. Coast 5.85 3.12 6.59 12.98∗∗∗ 17.16∗∗∗ 8.98∗∗∗ 6.13∗∗ 9.75∗∗∗ 7.10∗∗ 7.57∗∗ 3.08

(8.28) (6.21) (5.50) (3.73) (3.25) (3.18) (2.85) (2.75) (3.51) (3.20) (2.92)

Dist. River 4.39 2.73 −3.01 −6.14 −4.91 −9.92 −0.69 −3.55 6.40 3.77 3.80

(20.64) (14.07) (12.39) (10.94) (8.71) (7.65) (6.91) (7.05) (8.61) (8.37) (8.00)

Ruggedness 3.76 −18.58 −27.82 −29.96∗∗ −7.57 −25.35∗∗∗ −20.22∗∗ −14.49∗ −36.95∗∗∗ −32.27∗∗∗ −25.00∗∗

(36.84) (23.67) (19.40) (11.89) (10.88) (9.46) (9.40) (8.79) (9.80) (9.88) (11.20)

Temperature −15.99 36.57∗ 88.54∗∗∗ 11.85 26.19∗∗ 26.39∗∗∗ 25.32∗∗∗ 14.74∗ 34.60∗∗∗ 40.84∗∗∗ 17.40∗∗

(19.23) (21.08) (32.57) (12.98) (12.69) (9.82) (9.54) (8.88) (12.17) (10.32) (8.16)

Temperature2 −8.24 −171.40∗∗ −287.38∗∗ −71.36∗ −121.79∗∗∗ −102.89∗∗∗ −108.89∗∗∗ −103.90∗∗∗ −138.30∗∗∗ −154.70∗∗∗ −84.27∗∗∗

(71.89) (83.65) (135.01) (39.02) (41.63) (30.64) (29.34) (27.89) (37.14) (32.64) (25.13)

Precipitation −4.58 −24.67 13.84 −20.63 −21.30∗∗ −21.47∗∗ −15.63∗ −20.49∗∗ 11.92 −8.80 −7.33

(32.59) (25.15) (25.80) (13.58) (8.96) (8.37) (8.57) (8.03) (13.31) (10.76) (10.20)

Precipitation2 −123.08 −8.99 −132.95 19.51 36.19 35.71∗ 18.91 30.23 −54.98 6.75 −5.17

(131.10) (106.88) (110.19) (52.22) (23.03) (21.12) (23.92) (21.40) (42.42) (29.73) (31.45)

Elevation −133.20 −19.05 90.21 −61.37 −119.37∗∗∗ −68.47∗∗ −56.81∗ −95.81∗∗∗ 42.41 30.21 −19.89

(110.49) (66.52) (56.36) (39.66) (37.17) (30.31) (29.15) (29.80) (30.09) (29.24) (31.35)

Soil Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Num. obs. 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590

Notes: The table reports the regression results of eq. (14) using the prefecture seats. Heteroskedasticity-robust standard errors are in

parentheses (∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1). Distances in 10,000 km, Ruggedness in Ruggedness Index x 10,000,000, Temperature

in 100◦C, Precipitation in 10 m, Elevation in 100 km. Coefficient estimates on categorical soil variables - dominant soil type, landform,

lithology - omitted from the table.
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Table C-11: Local Geography (County Seats, Probit, Medium Pixels)

200 BCE 1 CE 200 CE 400 CE 600 CE 800 CE 1000 CE 1200 CE 1400 CE 1600 CE 1800 CE

Intercept 0.33 1.39 −0.21 0.23 2.68∗∗ 2.04∗ −0.43 −0.56 −0.22 −0.08 −0.13

(1.57) (1.44) (1.39) (1.18) (1.21) (1.07) (1.15) (1.12) (1.04) (1.01) (0.95)

Dist. Equator −6.16∗∗ −7.22∗∗∗ −5.33∗∗ −5.77∗∗∗ −8.36∗∗∗ −9.14∗∗∗ −5.59∗∗∗ −5.44∗∗∗ −6.05∗∗∗ −5.77∗∗∗ −4.72∗∗∗

(2.73) (2.41) (2.32) (1.91) (2.06) (1.81) (1.93) (1.90) (1.75) (1.68) (1.62)

Dist. Coast 0.69 −1.27 1.02 3.22∗∗∗ 8.23∗∗∗ 6.65∗∗∗ 6.59∗∗∗ 5.26∗∗∗ 0.75 1.90∗∗ 0.67

(1.34) (1.16) (1.15) (1.16) (1.06) (0.98) (1.05) (1.01) (1.02) (0.97) (0.96)

Dist. River 7.34∗∗ 3.86 3.12 −1.16 −5.72∗∗ 0.85 4.01∗ 4.49∗ −0.41 −1.58 0.06

(2.96) (2.81) (2.69) (2.69) (2.67) (2.33) (2.32) (2.36) (2.35) (2.26) (2.36)

Ruggedness −7.85∗ −4.33 −7.23 −15.72∗∗∗ 0.60 −5.54∗ −7.59∗∗ −8.47∗∗ −10.54∗∗∗ −9.49∗∗∗ −10.93∗∗∗

(4.53) (4.73) (4.62) (3.38) (3.86) (3.24) (3.55) (3.45) (3.32) (2.98) (2.67)

Temperature 33.10∗∗∗ 30.65∗∗∗ 31.13∗∗∗ 34.09∗∗∗ 20.13∗∗∗ 20.89∗∗∗ 26.34∗∗∗ 26.87∗∗∗ 29.98∗∗∗ 28.12∗∗∗ 22.30∗∗∗

(5.22) (6.09) (6.10) (5.60) (3.87) (3.91) (4.32) (3.99) (4.07) (3.91) (3.07)

Temperature2 −128.41∗∗∗ −107.23∗∗∗ −112.68∗∗∗ −128.81∗∗∗ −62.76∗∗∗ −70.30∗∗∗ −86.05∗∗∗ −91.59∗∗∗ −106.91∗∗∗ −102.34∗∗∗ −82.38∗∗∗

(17.96) (17.81) (18.13) (17.56) (11.80) (11.92) (12.91) (12.08) (12.58) (11.96) (9.76)

Precipitation −16.86∗∗∗ −15.95∗∗∗ −6.44 −6.62∗∗∗ −19.06∗∗∗ −9.30∗∗∗ −3.98 −1.64 −1.97 0.14 1.47

(4.01) (4.39) (4.10) (2.54) (2.79) (2.50) (2.59) (2.85) (2.70) (2.57) (2.64)

Precipitation2 26.40∗∗ 13.19 −1.53 13.51∗∗ 33.04∗∗∗ 14.57∗∗∗ 4.76 −2.20 −2.13 −7.01 −9.75

(11.04) (16.78) (14.62) (5.26) (5.58) (5.33) (6.04) (7.76) (6.82) (6.51) (7.05)

Elevation −78.10∗∗∗ −36.16∗∗∗ −30.83∗∗ −41.80∗∗∗ −91.44∗∗∗ −73.84∗∗∗ −66.82∗∗∗ −53.53∗∗∗ −30.69∗∗∗ −33.05∗∗∗ −25.07∗∗∗

(17.05) (13.53) (13.23) (11.15) (12.12) (10.64) (11.33) (10.58) (9.35) (8.95) (8.18)

Soil Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Num. obs. 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590

Notes: The table reports the regression results of eq. (14) using the county seats. Heteroskedasticity-robust standard errors are in

parentheses (∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1). Distances in 10,000 km, Ruggedness in Ruggedness Index x 10,000,000, Temperature

in 100◦C, Precipitation in 10 m, Elevation in 100 km. Coefficient estimates on categorical soil variables - dominant soil type, landform,

lithology - omitted from the table.
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Table C-12: Local Geography (Prefecture Seats, Probit, Medium Pixels)

200 BCE 1 CE 200 CE 400 CE 600 CE 800 CE 1000 CE 1200 CE 1400 CE 1600 CE 1800 CE

Intercept −0.54 2.74 −4.05 2.60 2.29 2.72∗ 2.05 4.04∗∗ 0.36 1.29 1.17

(4.50) (2.97) (2.80) (2.08) (1.79) (1.61) (1.63) (1.60) (1.72) (1.56) (1.59)

Dist. Equator −12.31 −10.33∗∗ 1.55 −9.83∗∗∗ −10.37∗∗∗ −11.08∗∗∗ −9.35∗∗∗ −12.95∗∗∗ −9.19∗∗∗ −10.42∗∗∗ −7.74∗∗∗

(8.08) (5.15) (4.96) (3.61) (3.05) (2.80) (2.82) (2.78) (2.89) (2.67) (2.70)

Dist. Coast 2.25 1.30 2.53 5.98∗∗∗ 8.33∗∗∗ 3.91∗∗ 2.88∗∗ 4.97∗∗∗ 3.30∗∗ 3.57∗∗ 1.66

(3.43) (2.76) (2.56) (1.68) (1.50) (1.54) (1.42) (1.32) (1.57) (1.44) (1.31)

Dist. River 2.04 1.17 −1.63 −2.61 −3.05 −4.28 −0.25 −1.74 3.73 2.58 2.03

(8.85) (6.14) (5.60) (5.03) (4.06) (3.53) (3.34) (3.42) (3.95) (3.90) (3.71)

Ruggedness 5.92 −7.73 −11.43 −13.42∗∗∗ −4.36 −10.77∗∗ −9.04∗∗ −6.77 −16.60∗∗∗ −14.06∗∗∗ −9.75∗∗

(15.80) (10.03) (7.82) (4.96) (4.67) (4.51) (4.58) (4.16) (4.32) (4.42) (4.98)

Temperature −6.97 14.28∗ 33.77∗∗∗ 5.06 9.80∗ 12.09∗∗∗ 11.42∗∗ 6.89∗ 14.76∗∗∗ 17.98∗∗∗ 6.37∗

(8.40) (7.88) (11.94) (5.50) (5.44) (4.47) (4.56) (4.18) (5.36) (4.44) (3.50)

Temperature2 1.88 −70.28∗∗ −108.50∗∗ −29.88∗ −50.37∗∗∗ −48.55∗∗∗ −51.35∗∗∗ −50.16∗∗∗ −60.63∗∗∗ −69.55∗∗∗ −33.71∗∗∗

(29.70) (29.75) (47.81) (16.20) (17.72) (14.25) (13.90) (13.07) (16.59) (14.55) (10.88)

Precipitation 0.63 −11.59 5.48 −9.72 −9.51∗∗ −8.88∗∗ −6.21 −9.56∗∗ 5.87 −4.35 −2.39

(13.73) (10.68) (10.58) (5.97) (3.95) (4.08) (4.49) (3.89) (5.82) (4.93) (4.65)

Precipitation2 −68.60 0.97 −57.75 11.37 16.16∗ 13.58 4.38 13.62 −28.14 2.71 −6.95

(55.62) (45.89) (44.76) (22.09) (9.59) (10.94) (14.01) (10.55) (18.68) (14.09) (15.10)

Elevation −54.07 −14.32 35.10 −27.41 −57.81∗∗∗ −32.27∗∗ −28.89∗∗ −47.87∗∗∗ 16.48 10.61 −13.42

(45.16) (25.71) (22.69) (17.16) (16.04) (14.01) (14.11) (14.31) (13.69) (13.16) (13.97)

Soil Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Num. obs. 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590

Notes: The table reports the regression results of eq. (14) using the prefecture seats. Heteroskedasticity-robust standard errors

are in parentheses (∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1). Distances in 10,000 km, Ruggedness in Ruggedness Index x 10,000,000,

Temperature in 100◦C, Precipitation in 10 m, Elevation in 100 km. Coefficient estimates on categorical soil variables - dominant

soil type, landform, lithology - omitted from the table.
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C.4 Robustness Check: Spatial Durbin Model

Our baseline methods in Section 4.1 estimate the effect of geography on city locations

non-spatially. They do not account for the effect a city or the geographic conditions in

surrounding pixels might have on a grid cell.

Our application does not provide a strong motivation for the use of spatial methods.

(i) Given that our pixels are not that large, their geography is very similar to that

of neighboring pixels. A spatially weighted environment, therefore, barely adds any

information. (ii) In terms of the dependent variable, we observe mostly isolated urban

pixels in a vast sea of rural pixels. Spatial spillovers in the urban indicator are much less

visible than they are in continuous data such as population size. (iii) The three distance

variables already account for important determinants along the spatial dimension. (iv)

Our analysis of indirect geography effects on city locations in Section 4.2 focuses on the

spatial dimension, but does so in a more structural manner shaped by the theoretical

framework and the historical context. To illustrate our results’ robustness, this section,

nonetheless, tests the mechanisms with spatial econometrics.4

We estimate a Spatial Durbin Model, i.e. a model of the form

y = ρWy +Xβ +WXθ + ε ((C-1))

where y is the urban indicator and X the geography vector. It is estimated with

maximum likelihood and accounts for global spatial spillovers. Observations refer to

medium size pixels for which the association between local geography and city locations

is clearer than at the baseline resolution (see Section 3.3.1). Table C-3 and Table C-4 in

Section C.1 display the respective results when using a linear probability model.

The estimates in Table C-13 and Table C-14 support the baseline results. We see

more significant coefficient estimates in county seat than in prefecture seat regressions.

And cities tend to locate in lower, less rugged terrain, and near rivers. Interesting are the

lagged variables’ reversed signs, e.g. in the case of elevation and ruggedness. When an

administrative city, i.e. a county seat, is set up in region, it is placed in the locally optimal

location, making the surrounding non-selected places appear comparatively worse.

4Spatial models in supervised machine learning are, unlike those in econometrics, still at an early
stage. E.g. classifying spatial data is still predominantly done via non-spatial methods. Geographic
random forests are a recent innovation that run a set of regional estimations instead of drawing random
samples from the full geographic space (Georganos et al., 2019). They can identify regional heterogeneity,
but are not spatial in the spatial econometrics sense - they do not address spatial spillovers. And so far,
they target continuous outcomes are not suited to binary classification problems. Supervised machine
learning algorithms that are able to match spatial econometrics are yet to be developed.
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Table C-13: Local Geography Regressions (County Seats, Medium Pixels)

200 BCE 1 CE 200 CE 400 CE 600 CE 800 CE 1000 CE 1200 CE 1400 CE 1600 CE 1800 CE

Intercept 1.23 1.87 2.49 1.60 2.34 0.76 3.34∗ 1.63 −0.24 −0.22 2.11

(1.45) (1.67) (1.70) (1.77) (1.82) (1.99) (1.97) (2.00) (2.02) (2.12) (2.16)

Dist. Equator −4.14 −6.93 −8.93 −5.87 −7.09 −3.67 −9.96 −4.35 0.20 0.05 −4.76

(5.31) (6.09) (6.21) (6.47) (6.64) (7.27) (7.18) (7.28) (7.38) (7.74) (7.88)

Dist. Coast 3.49 4.80 8.01 8.76∗ 11.06∗∗ 8.37 7.30 8.49 11.04∗ 12.61∗∗ 8.36

(4.35) (4.98) (5.09) (5.30) (5.44) (5.96) (5.88) (5.97) (6.05) (6.34) (6.46)

Dist. River −8.24∗∗ −6.43∗ −7.63∗∗ −6.95∗ −11.64∗∗∗ −3.23 −7.08 −8.81∗ −4.13 −1.19 −6.27

(3.32) (3.81) (3.89) (4.05) (4.16) (4.55) (4.49) (4.56) (4.62) (4.84) (4.93)

Ruggedness −1.57∗∗∗ −2.19∗∗∗ −2.66∗∗∗ −3.37∗∗∗ −3.14∗∗∗ −4.12∗∗∗ −4.86∗∗∗ −4.95∗∗∗ −4.87∗∗∗ −5.21∗∗∗ −5.38∗∗∗

(0.44) (0.51) (0.52) (0.54) (0.55) (0.60) (0.60) (0.61) (0.61) (0.64) (0.65)

Temperature −0.58 −0.45 −0.55 −0.45 −1.12 −1.43∗ −1.91∗∗ −2.20∗∗∗ −1.57∗ −2.11∗∗ −1.87∗∗

(0.58) (0.67) (0.68) (0.71) (0.73) (0.80) (0.79) (0.80) (0.81) (0.85) (0.86)

Temperature2 4.90∗ 5.40∗ 7.58∗∗ 8.57∗∗∗ 6.25∗ 9.28∗∗ 7.23∗∗ 10.54∗∗∗ 11.83∗∗∗ 12.28∗∗∗ 13.68∗∗∗

(2.73) (3.13) (3.19) (3.32) (3.41) (3.74) (3.69) (3.74) (3.79) (3.98) (4.05)

Precipitation 0.96 0.18 −1.06 −1.19 −0.15 0.68 −4.25∗∗ −2.40 −0.78 −0.87 −0.04

(1.53) (1.76) (1.80) (1.87) (1.92) (2.10) (2.08) (2.11) (2.13) (2.24) (2.28)

Precipitation2 0.63 2.90 5.21 5.76 3.66 4.96 13.28∗∗∗ 10.75∗∗ 7.82∗ 8.53∗ 6.58

(3.21) (3.68) (3.75) (3.91) (4.01) (4.39) (4.34) (4.40) (4.46) (4.68) (4.76)

Elevation −7.33∗∗∗ −9.91∗∗∗ −10.75∗∗∗ −11.39∗∗∗ −13.13∗∗∗ −15.42∗∗∗ −16.25∗∗∗ −16.89∗∗∗ −14.09∗∗∗ −17.07∗∗∗ −18.08∗∗∗

(1.85) (2.12) (2.16) (2.25) (2.31) (2.53) (2.50) (2.54) (2.57) (2.69) (2.74)

lag. Dist. E. 3.85 6.45 8.46 5.19 6.23 2.58 9.52 3.88 −0.92 −0.75 4.18

(5.34) (6.12) (6.24) (6.50) (6.68) (7.31) (7.22) (7.32) (7.42) (7.78) (7.92)

lag. Dist. C. −3.45 −4.79 −7.78 −8.31 −10.35∗ −7.72 −6.57 −7.76 −10.79∗ −12.16∗ −8.01

(4.36) (5.00) (5.11) (5.32) (5.46) (5.98) (5.90) (5.99) (6.07) (6.36) (6.48)

lag. Dist. R. 8.69∗∗ 6.46∗ 7.59∗ 6.52 10.83∗∗ 2.84 7.27 9.21∗∗ 4.02 0.75 5.95

(3.42) (3.92) (4.00) (4.17) (4.28) (4.68) (4.62) (4.69) (4.75) (4.98) (5.08)

lag. Rugg. 1.60∗∗∗ 2.45∗∗∗ 3.05∗∗∗ 3.04∗∗∗ 3.38∗∗∗ 3.82∗∗∗ 4.76∗∗∗ 4.89∗∗∗ 4.70∗∗∗ 5.21∗∗∗ 5.30∗∗∗

(0.61) (0.70) (0.71) (0.74) (0.76) (0.83) (0.82) (0.84) (0.85) (0.89) (0.90)

lag. Temp. 0.68 0.38 0.49 0.43 0.86 0.66 1.62∗ 2.00∗∗ 1.16 1.91∗ 1.83∗

(0.68) (0.78) (0.79) (0.82) (0.85) (0.93) (0.91) (0.93) (0.94) (0.99) (1.00)

lag. Temp.2 −3.84 −2.75 −5.86∗ −9.67∗∗∗ −3.43 −4.95 −3.03 −7.64∗ −9.25∗∗ −9.96∗∗ −11.56∗∗∗

(3.00) (3.44) (3.52) (3.66) (3.76) (4.12) (4.06) (4.12) (4.18) (4.38) (4.46)

lag. Prec. −1.68 −1.06 0.84 1.30 −0.50 −0.52 5.40∗∗ 3.51 1.15 1.88 1.05

(1.68) (1.93) (1.97) (2.05) (2.10) (2.30) (2.27) (2.30) (2.34) (2.45) (2.49)

lag. Prec.2 0.47 −1.67 −5.29 −6.30 −2.66 −5.88 −16.38∗∗∗ −13.83∗∗∗ −9.82∗∗ −12.12∗∗ −10.06∗

(3.58) (4.10) (4.18) (4.36) (4.47) (4.90) (4.84) (4.91) (4.97) (5.21) (5.31)

lag. Elev. 6.06∗∗∗ 8.02∗∗∗ 8.31∗∗∗ 5.85∗∗ 6.85∗∗ 7.58∗∗ 10.24∗∗∗ 11.12∗∗∗ 8.96∗∗∗ 11.67∗∗∗ 13.15∗∗∗

(2.25) (2.58) (2.64) (2.75) (2.82) (3.09) (3.05) (3.09) (3.13) (3.28) (3.34)

Soil Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Num. obs. 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590

Notes: The table reports the regression results of eq. ((C-1)) using the county seats. Heteroskedasticity-robust standard errors

are in parentheses (∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1). Distances in 10,000 km, Ruggedness in Ruggedness Index x 10,000,000,

Temperature in 100◦C, Precipitation in 10 m, Elevation in 100 km. Coefficient estimates on categorical soil variables - dominant

soil type, landform, lithology - omitted from the table. Spatial weights based on queen contiguity.
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Table C-14: Local Geography Regressions (Prefecture Seats, Medium Pixels)

200 BCE 1 CE 200 CE 400 CE 600 CE 800 CE 1000 CE 1200 CE 1400 CE 1600 CE 1800 CE

Intercept 0.33 0.32 0.03 1.17 0.99 −0.32 0.53 0.33 0.74 0.36 0.33

(0.46) (0.62) (0.68) (0.95) (1.05) (1.21) (1.27) (1.28) (1.05) (1.08) (1.13)

Dist. Equator −0.89 −0.91 −0.29 −3.56 −3.01 1.77 −0.88 −0.03 −2.26 −1.04 −0.06

(1.68) (2.26) (2.49) (3.45) (3.83) (4.41) (4.64) (4.67) (3.82) (3.93) (4.11)

Dist. Coast −0.43 −1.23 0.39 2.62 3.05 4.55 5.47 3.24 0.31 0.10 2.30

(1.38) (1.85) (2.04) (2.83) (3.14) (3.62) (3.80) (3.82) (3.13) (3.22) (3.37)

Dist. River −0.84 −2.41∗ −2.72∗ −5.78∗∗∗ −5.61∗∗ −4.05 −3.96 −5.47∗ −2.70 −4.01 −5.06∗∗

(1.05) (1.41) (1.56) (2.16) (2.40) (2.76) (2.90) (2.92) (2.39) (2.46) (2.57)

Ruggedness −0.13 −0.39∗∗ −0.25 −1.08∗∗∗ −1.13∗∗∗ −1.92∗∗∗ −2.18∗∗∗ −2.06∗∗∗ −1.53∗∗∗ −1.63∗∗∗ −1.88∗∗∗

(0.14) (0.19) (0.21) (0.29) (0.32) (0.37) (0.39) (0.39) (0.32) (0.33) (0.34)

Temperature −0.07 0.15 0.23 0.17 −0.45 −0.57 −0.72 −0.45 −0.10 −0.04 −0.36

(0.18) (0.25) (0.27) (0.38) (0.42) (0.48) (0.51) (0.51) (0.42) (0.43) (0.45)

Temperature2 0.54 −0.35 0.18 2.13 1.92 3.19 2.55 1.98 −0.48 0.38 1.84

(0.86) (1.16) (1.28) (1.77) (1.97) (2.27) (2.38) (2.40) (1.96) (2.02) (2.11)

Precipitation −0.70 0.24 1.17 −1.04 0.20 −0.16 −1.24 −1.00 −0.05 0.65 −1.04

(0.49) (0.65) (0.72) (1.00) (1.11) (1.28) (1.34) (1.35) (1.10) (1.14) (1.19)

Precipitation2 1.62 0.18 −1.39 2.79 1.06 2.56 4.26 3.72 1.71 0.79 2.95

(1.01) (1.36) (1.51) (2.08) (2.31) (2.67) (2.80) (2.82) (2.31) (2.38) (2.48)

Elevation −0.65 −1.26 −1.82∗∗ −3.69∗∗∗ −5.71∗∗∗ −6.51∗∗∗ −7.29∗∗∗ −8.17∗∗∗ −3.40∗∗ −3.84∗∗∗ −5.59∗∗∗

(0.58) (0.79) (0.87) (1.20) (1.33) (1.54) (1.61) (1.62) (1.33) (1.37) (1.43)

lag. Dist. E. 0.76 0.72 0.18 3.15 2.59 −2.26 0.55 −0.59 2.21 0.90 −0.06

(1.69) (2.27) (2.51) (3.47) (3.85) (4.44) (4.66) (4.69) (3.83) (3.95) (4.13)

lag. Dist. C. 0.45 1.30 −0.26 −2.36 −2.53 −4.39 −5.31 −2.93 −0.19 −0.01 −2.31

(1.38) (1.86) (2.05) (2.84) (3.15) (3.63) (3.81) (3.84) (3.14) (3.23) (3.38)

lag. Dist. R. 0.81 2.37 2.71∗ 5.74∗∗∗ 5.52∗∗ 3.68 3.98 5.38∗ 2.67 4.05 5.16∗

(1.08) (1.45) (1.61) (2.22) (2.47) (2.84) (2.99) (3.01) (2.46) (2.53) (2.65)

lag. Rugg. 0.09 0.29 0.02 0.81∗∗ 0.98∗∗ 1.64∗∗∗ 2.13∗∗∗ 2.09∗∗∗ 0.94∗∗ 1.15∗∗ 1.99∗∗∗

(0.19) (0.26) (0.29) (0.40) (0.44) (0.51) (0.53) (0.54) (0.44) (0.45) (0.47)

lag. Temp. −0.04 −0.26 −0.23 −0.39 0.41 0.21 0.54 0.05 0.18 0.09 0.31

(0.21) (0.29) (0.32) (0.44) (0.49) (0.56) (0.59) (0.59) (0.49) (0.50) (0.52)

lag. Temp.2 −0.16 0.83 0.15 −2.33 −1.70 −1.61 −1.76 −1.63 0.92 0.31 −0.98

(0.95) (1.28) (1.41) (1.95) (2.17) (2.50) (2.62) (2.64) (2.16) (2.23) (2.33)

lag. Prec. 0.59 −0.54 −1.36∗ 0.70 −0.34 −0.27 0.98 0.69 0.04 −0.96 0.85

(0.53) (0.71) (0.79) (1.09) (1.21) (1.40) (1.47) (1.48) (1.21) (1.24) (1.30)

lag. Prec. 2 −1.49 0.29 1.67 −2.25 −0.93 −1.93 −4.04 −3.33 −2.10 −0.62 −2.91

(1.13) (1.52) (1.68) (2.32) (2.58) (2.97) (3.12) (3.14) (2.57) (2.65) (2.77)

lag. Elev. 0.09 0.60 1.86∗ 2.29 3.06∗ 5.03∗∗∗ 6.27∗∗∗ 5.58∗∗∗ 4.37∗∗∗ 4.32∗∗∗ 5.10∗∗∗

(0.71) (0.96) (1.06) (1.46) (1.62) (1.87) (1.97) (1.98) (1.62) (1.67) (1.74)

Soil Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Num. obs. 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590 9, 590

Notes: The table reports the regression results of eq. ((C-1)) using the prefecture seats. Heteroskedasticity-robust

standard errors are in parentheses (∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1). Distances in 10,000 km, Ruggedness in

Ruggedness Index x 10,000,000, Temperature in 100◦C, Precipitation in 10 m, Elevation in 100 km. Coefficient estimates

on categorical soil variables - dominant soil type, landform, lithology - omitted from the table. Spatial weights based on

queen contiguity.
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C.5 Supplementary Results on Random Forest’s Correctly

Classified Pixels

The classification random forests’ objective in Section 3.3.1 is to distinguish urban from

rural pixels. Most pixels are rural and the difficult part is to correctly spot the few

urban grid cells using geographic characteristics. According to Figure 6, the algorithm

manages to correctly classify more than 60 percent of county seat locations as urban at

the coarsest resolution. In contrast, it marks almost no prefecture seat locations as urban.

Technically, the algorithm could reach a high share of correctly classified urban pixels

by generally labeling more pixels urban. In a statistical sense, we would speak of a high

sensitivity. This might come at the expense of a low specificity, which would be the case

if a lower share of rural pixels were to be correctly classified as rural. In the following, we

illustrate that the prediction quality on urban pixels does not undermine the prediction

quality on rural pixels.

In Figure C-1 we compare the fraction of urban, rural, and overall pixels that were

correctly classified. In the upper figures, the higher classification quality of county seat

locations at low resolutions is accompanied by slightly worse predictions of rural pixels.

And rural pixels are, apparently, slightly more difficult to identify in later years than

in earlier ones. However, that slope is unrelated to the shape of the urban pixel’s

prediction quality over the years. More correctly classified urban pixels does not imply

fewer correctly classified rural pixels. Moreover, we see that the changes over time are

never as large as the differences in the prediction performance between county seats

(upper figure) and prefecture seats (lower figure).
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Figure C-1: Classification Random Forest Results
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C.6 Supplementary Results on Random Forest’s R2

The paper visualizes the share of correctly classified county and prefecture seats of the

random forest classifier using different resolutions in Section C.5. In Figure C-2, we

repeat this analysis using the R2 from random forest regression rather than the correctly

classified share from random forest classification. The pattern is very similar. Figure C-3

also links the results to the dynasties.
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Figure C-2: R2 in Regression Random Forests Linking Geography and Settlement
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C.7 Random Forest: Variable Importance

Figure 4 and Figure 5 illustrate the variable importance of geographic factors in predicting

city locations at the baseline resolution. The following Figure C-4 plots the corresponding

variable rankings when using larger pixels. It confirms the baseline result of ranks being

more stable over time in county seat estimations than in prefecture seat estimations.

0.0

2.5

5.0

7.5

10.0

0 500 1000 1500 2000
Year

R
an

k

Variables

Dist. Coast

Dist. Equator

Dist. River

Dom. Soil

Elevation

Landform

Lithology

Precipitation

Ruggedness

Temperature

(a) County Seats, Small Pixels

0.0

2.5

5.0

7.5

10.0

0 500 1000 1500 2000
Year

R
an

k

Variables

Dist. Coast

Dist. Equator

Dist. River

Dom. Soil

Elevation

Landform

Lithology

Precipitation

Ruggedness

Temperature

(b) Prefecture Seats, Small Pixels

0.0

2.5

5.0

7.5

10.0

0 500 1000 1500 2000
Year

R
an

k

Variables

Dist. Coast

Dist. Equator

Dist. River

Dom. Soil

Elevation

Landform

Lithology

Precipitation

Ruggedness

Temperature

(c) County Seats, Medium Pixels

0.0

2.5

5.0

7.5

10.0

0 500 1000 1500 2000
Year

R
an

k

Variables

Dist. Coast

Dist. Equator

Dist. River

Dom. Soil

Elevation

Landform

Lithology

Precipitation

Ruggedness

Temperature

(d) Prefecture Seats, Medium Pixels

0.0

2.5

5.0

7.5

10.0

0 500 1000 1500 2000
Year

R
an

k

Variables

Dist. Coast

Dist. Equator

Dist. River

Dom. Soil

Elevation

Landform

Lithology

Precipitation

Ruggedness

Temperature

(e) County Seats, Large Pixels

0.0

2.5

5.0

7.5

10.0

0 500 1000 1500 2000
Year

R
an

k

Variables

Dist. Coast

Dist. Equator

Dist. River

Dom. Soil

Elevation

Landform

Lithology

Precipitation

Ruggedness

Temperature

(f) Prefecture Seats, Large Pixels

0.0

2.5

5.0

7.5

10.0

0 500 1000 1500 2000
Year

R
an

k

Variables

Dist. Coast

Dist. Equator

Dist. River

Dom. Soil

Elevation

Landform

Lithology

Precipitation

Ruggedness

Temperature

(g) County Seats, Very Large Pixels

0.0

2.5

5.0

7.5

10.0

0 500 1000 1500 2000
Year

R
an

k

Variables

Dist. Coast

Dist. Equator

Dist. River

Dom. Soil

Elevation

Landform

Lithology

Precipitation

Ruggedness

Temperature

(h) Prefecture Seats, Very Large Pixels

Figure C-4: Variable Importance at Different Pixel Sizes

xxviii



C.8 Robustness Check: Alternative Empire Size

The baseline strategy relies on the empire’s maximum extent, as observed in the CHGIS

data. Holding imperial borders constant helps us to overcome missing prefecture borders

before 1350 CE. The alternative choice, altering the shape every year and only accounting

for pixels that certainly were part of the empire, excludes a lot of cities in earlier

years, producing a much smaller, non-representative set of settlements. The maximum

extent as a constant shape makes sure that relevant areas are included, at the cost of

adding some remote regions that did not belong to the empire in all years. Given the

distinctive geographic differences between the periphery and the heartland, adding these

additional rural pixels should not pose a major problem to the random forest estimations.

Nonetheless, we test alternative shapes in the following paragraphs to evaluate any

potential biases.
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Maximum Minimum Minimum Post 1350 CE

Figure C-5: Constant Extents of the Empire

In Figure C-5 the baseline shape, i.e. the areas that ever belonged to a prefecture

observed in CHGIS are denoted in red, those that belonged to a prefecture in all years

between 221 BCE and 1911 CE in green, and those that belonged to a prefecture in all

years between 1350 CE and 1911 CE in blue. The green territories are primarily small

because the data on prefecture borders is incomplete prior to 1350 CE.5

5County and prefecture seat locations are not plagued by these missing data issues.
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Table C-15: Geography Summary Statistics, Minimum Empire Extent

Mean St. Dev. Min Max

Distance from Coast 258.573 210.546 0.208 797.336

Distance from River 191.860 112.223 1.285 475.299

Distance from Equator 3,081.696 208.617 2,668.395 3,572.082

Elevation 334.952 264.877 0.000 1,488.094

Ruggedness 200,837.699 134,018.285 0.000 620,263.812

Temperature 16.564 1.368 11.389 21.197

Precipitation 1,507.894 207.826 969.096 2,046.855

Notes: distances in km, temperature in ◦C, precipitation in mm per year, elevation in meters,

ruggedness index in millimeters as defined by Nunn and Puga (2012). Values refer to the Chinese

empire’s minimum shape with 6,227 pixels 7.33 x 9.51 km in size. Landform, dominant soil type, and

lithology are categorical variables and summarized in Online Appendix B. See Table B-1 for details

on variable generation. Variables are differently scaled in subsequent chapters to facilitate readability.

Table C-16: Geography Summary Statistics, Minimum Post 1350 CE Empire Extent

Mean St. Dev. Min Max

Distance from Coast 519.713 361.411 -1.708 1,748.724

Distance from River 117.039 106.098 0.630 701.471

Distance from Equator 3,319.632 559.178 2,012.333 4,508.966

Elevation 759.549 782.351 -0.139 4,627.913

Ruggedness 200,359.188 170,948.605 0.000 1,147,039.125

Temperature 14.957 4.412 -10.125 25.267

Precipitation 1,085.534 462.630 92.340 3,948.264

Notes: distances in km, temperature in ◦C, precipitation in mm per year, elevation in meters,

ruggedness index in millimeters as defined by Nunn and Puga (2012). Values refer to the Chinese

empire’s minimum post 1350 CE shape with 48,077 pixels 7.33 x 9.51 km in size. Landform, dominant

soil type, and lithology are categorical variables and summarized in Online Appendix B. See Table B-1

for details on variable generation. Variables are differently scaled in subsequent chapters to facilitate

readability.
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Figure C-6: Classification Random Forest Results (Minimum Empire Extent)
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Figure C-7: Classification Random Forest Results (Minimum Post 1350 CE Empire
Extent)

Figure C-6 and Figure C-7 replicate Figure C-1 with the two alternative empire

shapes. The post 1350 CE minimum extent mostly excludes the little urbanized

periphery and, thus, produces results that are very similar to the baseline outcomes -

xxxiii



underlining their robustness. The overall minimum shape, in contrast, omits most cities

from the estimations and generates strongly volatile results. These patterns may point

to both, the smaller number of observations used in the algorithm and the threat of

omitting regions that are crucial to the spatial organization.

We do not split the empire into the physiographic macroregions defined by Skinner

(1977a) and Skinner (1977b). As von Glahn (2016) criticizes, those macroregions only

began to resemble actual conditions in imperial China after the crises of the 19th century.

We, therefore, stick to our model of an empire-wide process that inter alia reflects the

need to transport resources from the interior to the frontier and the disparities between

the Yellow River and the Yangzi (Mostern, 2011).
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C.9 Robustness Check: Paleo Data

Our baseline model uses modern geography data. In contrast to paleoclimatic data,

it has the advantages of being available for many variables and of being accurately

identified at high resolutions. Nonetheless, some geographic factors changed over time.

In this section, we illustrate that using paleoclimatic data does not change the results.

The adjustments that we account for are the changes in Yellow River’s lower path and

developments in temperature and precipitation.6

Figure C-8 shows how the Yellow River changed its course over time. The data comes

from Chen et al. (2012) and Chen et al. (2015). The many path changes and floods were

largely a result of deforestation causing soil erosion and consequently increased sediment

uptake in the river (Elvin, 2004). Bursting dikes on 1593 occasions, many floods had

a devastating impact on the population and the institutional setting. To name a few

examples: a flood in 2 CE directly killed tens of thousands of people and triggered

starvation and disease with an even higher death toll (Major and Cook, 2017); a few

years later, in 11 CE, again thousands died from a flood that resulted in mass migration,

famine, emerging bandit gangs killing county officials and forming armies, and turned out

to be a key reason for the fall of the Xin dynasty (Major and Cook, 2017); a flood with

a particularly high death tool was the one in 1117 CE that killed over a million people

(Elvin, 2004; Tuotuo, 1346).

6The baseline data on temperature and precipitation refers to observations between 1900 and 1950
and should be less affected by man-made climate change than 21th century data. Nonetheless, it does
not account for the historic fluctuations in climate.
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Figure C-8: All Observed Lower Yellow River Paths

We use multiproxy warm season temperature reconstructions by Zhang et al. (2018),

which is published at a 5 x 5 degree resolution in decadal intervals, as information on

historic temperatures. The precipitation data is reconstructed summer precipitation by

Shi et al. (2018) published as 2 x 2 degree pixels at an annual level. With both, a

5 x 5 degree and a 2 x 2 degree resolution, the grid cells are so large that the whole

empire just contains a few pixels. To increase the sample size to a level that can

meaningfully be used in estimations, we disaggregate cells to the baseline resolution via

bilinear interpolation. The severe measurement error this introduces and the fact that

the temperature is measured in anomalies rather than levels are the reasons why we add

the paleoclimatic data on temperature and precipitation as additional variables, without
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replacing the modern counterparts.7
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Figure C-9: Correctly Classified Urban Pixels in 1500 CE

Figure C-9 compares results with the baseline outcomes.8 It turns out that accounting

for geographic changes barely affects the estimates, underlining the robustness of our

baseline results.

7Climatic shocks had marked effects on the empire, often setting off a series of events. Climatic
disturbances and cold whether led to harvest failures between 1638 and 1642 CE and the Chinese
population size shrank by 20 percent in response to the ensuing natural disasters, wars, and epidemics
(von Glahn, 2016; Atwell, 1986, 1990; Marks, 2012). Many dynasties set up grain reserves to counter
famines resulting from geographic shocks, such as floods and changes in climate, which were such a
severe threat that they could lead to the downfall of a dynasty (Mostern, 2011; von Glahn, 2016). Even
the Qing dynasty that intervened comparatively little in other regards was heavily invested in a system
of grain reserves (von Glahn, 2016; Will, 1990; Will and Wong, 1991). Despite the effort that was put
into this system, the Qing’s granary reserves were depleted after the Tambora volcanic eruption induced
a series of failed harvests at a global scale (von Glahn, 2016). Climatic changes were without doubt
important. However, as long as there is only data on large macro regions, the incentives to relocate
administrative cities between more fine-grain locations are not traceable.

8The results are derived via classification random forests.
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C.10 Supplementary Results on Urban Persistence

Table C-17 displays the results of estimating eq. (15) via OLS. County seat regressions

produce more statistically significant coefficient estimates and a higher R2 than prefecture

seat regressions do. As concluded from regression random forest outcomes depicted in

Figure 8, local geography is a strong predictor of county seat but not prefecture seat

persistence.

Table C-17: Urban Persistence

Very Small Small Medium Large Very Large

C P C P C P C P C P

Intercept 115.39∗∗∗ 95.94∗ 121.60∗∗ 119.62∗ 134.81∗∗ 193.21∗∗∗ 221.31∗∗∗ 205.24∗∗ 213.10∗∗∗ 162.69∗

(39.89) (53.82) (48.28) (63.15) (55.82) (67.60) (70.46) (83.79) (80.22) (91.89)

Elevation −13.81∗∗∗ −1.36 −15.05∗∗∗ −3.65 −19.68∗∗∗ −5.56 −30.41∗∗∗ −5.02 −34.76∗∗∗ −4.75

(3.61) (4.70) (4.34) (5.17) (5.04) (5.69) (6.31) (7.00) (7.22) (8.07)

Ruggedness −2.43∗∗ −4.04∗∗∗ −2.87∗∗ −4.32∗∗∗ −2.86∗ −3.51∗∗ −2.18 −5.23∗∗ −0.04 −5.49∗∗

(1.13) (1.48) (1.44) (1.52) (1.74) (1.68) (2.06) (2.12) (2.57) (2.33)

D. Coast 14.99∗∗∗ −2.25 16.89∗∗∗ −2.86 21.69∗∗∗ 4.25 22.50∗∗∗ 2.52 8.91 0.31

(3.98) (5.52) (4.93) (6.04) (5.57) (6.57) (6.81) (7.27) (7.76) (7.76)

D. River 22.10∗∗ 11.56 16.49 7.88 11.81 9.60 −29.98∗ 38.28∗ −53.64∗∗∗ 15.40

(10.92) (15.99) (13.05) (18.18) (14.95) (18.87) (17.99) (21.45) (19.90) (22.81)

D. Equa. −17.75∗∗ −18.09∗ −19.28∗∗ −25.54∗∗ −24.53∗∗ −38.45∗∗∗ −33.87∗∗∗ −38.67∗∗∗ −30.47∗∗ −34.43∗∗

(6.99) (9.68) (8.39) (11.22) (9.69) (12.06) (12.10) (14.51) (13.64) (15.76)

Temp. 37.69∗∗∗ 24.87 71.65∗∗∗ 27.49∗ 105.77∗∗∗ 16.36 96.31∗∗∗ 16.71 129.35∗∗∗ 34.71∗

(12.52) (15.19) (14.22) (14.49) (16.27) (14.99) (23.62) (17.72) (24.13) (20.90)

Precip. 2.90 2.90 −7.40 14.91 −36.56 −21.50 −60.55∗∗ 6.98 −58.90∗ 5.15

(15.90) (21.45) (20.02) (20.40) (23.26) (25.01) (28.10) (26.24) (30.71) (32.03)

Temp.2 −20.23∗∗∗ −15.29∗∗∗ −32.87∗∗∗ −17.34∗∗∗ −42.13∗∗∗ −16.75∗∗∗ −39.89∗∗∗ −18.38∗∗∗ −49.14∗∗∗ −19.78∗∗∗

(4.32) (5.67) (4.81) (5.38) (5.61) (5.83) (7.47) (6.39) (7.89) (7.26)

Precip.2 0.16 −1.40 1.57 −6.77 13.35 9.56 15.76 −5.44 12.67 −6.01

(6.00) (8.31) (7.54) (6.57) (8.54) (9.54) (10.21) (7.58) (10.76) (10.72)

Soil Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Adj. R2 0.07 0.05 0.10 0.03 0.17 0.07 0.20 0.04 0.29 0.05

Num. obs. 4172 1447 3435 1334 2705 1236 2061 1107 1616 976

Notes: Heteroskedasticity-robust standard errors are in parentheses (∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1). Distances

in 1,000 km, Ruggedness in Ruggedness Index x 100,000, Temperature in 10◦C, Precipitation in m, Elevation in km.

Coefficient estimates on categorical soil variables - dominant soil type, landform, lithology - omitted from the table. C

and P refer to county seat and prefecture seat estimations respectively. Very small, small, medium etc. denote the pixel

size.
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C.11 Robustness Check: Alternative Hiking Function

In Section 4.2 we compute the travel time between locations using Tobler’s (1993)

hiking function. To illustrate the robustness of those results we repeat the estimation

with an alternative cost function by Márquez-Pérez et al. (2017) who modified Tobler’s

specification.

Figure C-10: Inter-City Distance and Administrative Status (Márquez-Pérez et al.,
2017)

The results are so similar that Figure 9 and Figure C-10 look quasi identical.
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Figure C-11: Pixel Centrality and Administrative Status (Márquez-Pérez et al., 2017)

The same holds comparing Figure 10 and Figure C-11.
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C.12 Robustness Check: Euclidean Distance

The baseline specifications in Section 4.2 use travel time as distance measure. In this

section we repeat those estimations with Euclidean distance. Unlike travel time computed

via hiking functions, the Euclidean distance measure does not take the topography into

account. It is simply the length of a straight line between two locations.

Figure C-12: Inter-City Distance and Administrative Status (Euclidean Distance)

The outcomes depicted in Figure C-12 and Figure C-13 are similar to Figure 9 and

Figure 10, confirming the results robustness to alternative distance measures.
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Figure C-13: Pixel Centrality and Administrative Status (Euclidean Distance)
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C.13 Supplementary Results on the Prefecture Seat Location

Algorithm

The prefecture seat location algorithm begins with randomly drawn prefecture seat

locations, where the number of seats is set to the actual number of seats as observed

in the data in that year. We then assign county seats to the nearest artificial prefecture

seat. If all prefecture seats are assigned at least two county seats, the process enters into

the next stage. If not, the prefecture seats with less than two county seats are randomly

relocated until all prefecture seats are assigned at least two county seats. In the next

stage, the algorithm shifts the prefecture seats to the pixel that minimizes the total

distance to the assigned county seats.9 County seats are then re-assigned to the nearest

prefecture seat and prefecture seats moved to the pixel that minimizes the distance. The

algorithm stops when at least 90 percent of prefecture seats remain in their location. We

run the mechanism eight times per cross-section which should result in eight independent

stable prefecture seat allocations.

9Distances are measured in travel time according to Tobler’s (1993) hiking function which takes the
topography into account. Using an adjusted version of Tobler’s (1993) hiking function by Márquez-Pérez
et al. (2017) as a robustnes checks confirms the results.
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County Seat Prefecture Seat (Actual) Prefecture Seat (Algorithm)

Figure C-14: Prefecture Seat Location Algorithm Outcome in 1350 CE

Figure C-14 plots one of the eight outcomes that we obtain for 1350 CE. The outcomes

mostly differ from the actual spatial distribution of prefecture seats in outlying silk road

regions. These location were of military importance, but hosted little population which

is why the ratio between prefecture and county seats differs from the rest of the empire.

Adding the silk road (Williams, 2020) to the algorithm, lifting the two county seat

requirement around it, and attributing it a gravitational force, as attributed to the county

seats, addresses those systematic discrepancies and improves the resemblance between the

actual and the artificial prefecture seat locations. Overall, these results provide evidence

in favor of our hypothesized institutional optimization.

xliv



C.14 Supplementary Results on China in 1820 CE

Here we present additional results on the extension using market towns in 1820 CE.

Figure C-15 shows that the random forest regression R2 for county seats, prefecture

seats, and market towns exhibits the same pattern as the share of correctly classified

pixels discussed in the paper. Market towns are determined to a much stronger extent

by geographical features than county seats and prefecture seats.

The relative ranks of the individual geographical features are roughly the same across

the three types of cities, as Figure C-16 shows. Temperature and elevation are important

for all three cities. We can also see that the relative ranks of the geographical features do

not change by much when varying the size of the pixel, although the paper shows that it

does affect the explanatory power of the model.
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Figure C-15: R2 for Chinese Cities in 1820 CE
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Figure C-16: Variable Importance at Different Pixel Sizes in 1820 CE
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C.15 Supplementary Results on Europe

Figure C-17 shows the R2 of the random forest used in regressing the location of European

or Chinese city on the geographical features. The pattern is very similar to that observed

in the paper, where the fraction of correctly classified urban pixels is reported. We see that

European cities fall in between Chinese county and prefecture seats when it comes to the

explanatory power of geographical features for their location. At the coarsest resolution,

geographical features can explain nearly 50 percent of the location of Chinese county

seats, just above 32 percent of European cities, and 11 percent of Chinese prefecture

seats.10
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Figure C-17: R2 in Regression Random Forests for China and Europe

10The estimations omit the three soil-related variables landform, dominant soil type, and lithology
which are derived from an Asia-specific data set.
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C.16 Supplementary Results on Modern China

Figure C-18 illustrates the location of the 29 current province and autonomous region

capitals that fall into the territory of former Chinese empires observed in CHGIS. As

decribed in the main text, 28 of these 29 cities were also a prefecture seat some time in

imperial China.

Figure C-18: Selected Modern Provincial Capitals

In Figure C-19 we show scatter plots on the relation between population and satellite

data of nighttime light as described in the main paper. The figures illustrate the strong

association between the two values, underlining our finding that historical prefecture and

county seats, which are more populous, are also more economically active as measured

by nighttime lights.
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Figure C-19: Modern Chinese Cities’ Population Size and Nighttime Light Emissions
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